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LETTER FROM THE EDITOR

In this issue, Robert Mena and Will Murray introduce us to the inner workings of a
Markov chain. Many of us know how to analyze Markov chains mechanically using
large matrices. But the process in this article has a succession of stages, and the authors
show us that by tracking it carefully through each stage, we get more detailed results
and more valuable insights.

Rick Mabry’s article is about quadrilaterals cut by straight lines, and he finds rela-
tionships among the areas formed. He gives visual proofs, and then tracks some of the
relationships back to a problems journal from the 1940’s. Will our own writings still
attract researchers sixty years from now? Of course they will; we’re mathematicians!

In the notes, Greg Markowsky connects two beautiful theorems of geometry, and
Ernst Scheufens helps us understand the values of the zeta function. In between we are
treated to prime-divisible sequences, well-chosen sums of consecutive integers, and
a computer game that generalizes the classical secretary problem. Roger Alperin and
Vladimir Drobot tell us how to construct a ruler, if we are being charged a fee for each
mark.

The Putnam feature at page 74 required scrambling to meet the deadline. We thank
the Putnam Committee for that task and for everything else they do.

There is a story behind the cover. What old joke does it illustrate? To find out, start
by reading the first paragraph on page 3.

The first draft of the cover illustration had Styrofoam coffee cups, without handles.
That’s because the artist is a graduate student. Graduate students think all coffee cups
are Styrofoam, or perhaps just paper—that is a common experience across all disci-
plines! I was able to explain why the coffee cups in the illustration needed handles. The
artist did wonder, however, why the players in this evening poker game were drinking
coffee, rather than, say, beer. That’s easy, of course. Mathematicians can’t turn beer
into theorems!

The cover has a new color, too. Most editors choose to alternate between two col-
ors, and I have chosen Crimson and Blue, the colors of the University of Kansas, my
undergraduate college. Crimson is also a color of two other universities I attended:
Pittsburg State University in Kansas (Crimson & Gold) and Harvard University (just
Crimson). There is a historical connection. The Kansas schools are among many that
have chosen Crimson to honor the inspiration they have received from Harvard.

Walter Stromquist, Editor



ARTICLES

Markov Chains for Collaboration

ROBERT MENA

rmena@csulb.edu

WILL MURRAY

wmurray@csulb.edu
California State University, Long Beach
Long Beach, CA 98040-1001

Introduction: Who wants to be a collaborator?

The math department at New Alarkania State University is comprised of Alan the
analyst, Lorraine the logician, Stacy the statistician, and Tom the topologist. Each one
is desperate for collaborators, so they start a Friday poker series. Each one is equally
skilled, and they agree that the loser of each week’s game (the first to run out of money)
will renounce his or her former field and join the research team of the biggest winner.

In the first week, Stacy wins and Tom loses, so Tom gives up topology and joins
Stacy to study statistics. The following week, Lorraine wins and Stacy loses, so Stacy
becomes a logician. Next, Stacy wins and Lorraine loses, so no one has to switch. You
have no doubt already guessed that eventually (with probability one) all of them will
be working in the same field. (After the first week, for example, one field has already
disappeared permanently, since as soon as Tom loses there are no more topologists.)

This is an example of a Markov chain, in which a system can be in a number of
possible states, and at each time step there is a certain probability of moving to each
of the other states (or of remaining in the same state). Kemeny and Snell ([2]) give an
excellent background on Markov chains.

We will break our chain up into stages, numbered in reverse order according to how
many fields are remaining. Thus, we start in Stage 4, meaning there are four fields left,
but after one week we are certain to be in Stage 3. We will study three questions here:

1. How long do we expect to stay in each stage? The expected time in Stage 4 (or
Stage n in the general case of n starters) is exactly one week, but after that it gets
more complicated.

2. When we first arrive at Stage t — 1 from Stage t, what is the most likely configura-
tion of the fields? More precisely, what are the probabilities of arriving at different
configurations of the players into t — 1 teams? For example, with n = 4 starters,
when we go down from three fields to two, are we more likely to have two teams
of two players each, or a team of three and a lone wolf?

3. How long does the game last? In other words, what is the expected time until we
reach the absorbing state in which everyone is on the same team? Of course, the
answer here is just the sum of the answers from Question 1.

Math. Mag. 84 (2011) 3-15. doi:10.4169/math.mag.84.1.003. (© Mathematical Association of America
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We invite you to play with the small cases of n = 3, 4, or 5 starters, which are
not too hard to work out from first principles. You will find that the answers to Ques-
tion 3 are 4, 9, and 16 weeks respectively. It might not be obvious that this stunning
pattern should continue to hold, but we will prove that with n starters, the expected
time is indeed (n — 1) weeks. (Unfortunately, there appears to be no correspondingly
congenial answer for the variance.)

The general answers to Questions 1 and 2 are not so obvious from analyzing small
cases. For example, with n = 5 starters, the total expected time of 16 weeks breaks
down into stages of es4 = 1, e43 = % ey = %), and e,; = 10 weeks. We will see that
these come from binomial coefficients and that the answer to Question 2 comes from
multinomial coefficients.

We organize the paper as follows: In the second section, we warm up by solving
the case n = 4 from scratch, using no sophisticated machinery. Besides resolving the
question for New Alarkania State, this will give us an informal preview of some of
the notation and theorems coming later. Next, we introduce more formal notation and
illustrate it with a larger example, n = 6. We then study the vectors of probabilities
and discover multinomial coefficients as the answer to Question 2. With the proba-
bility vectors in hand, it is relatively quick to study the expected times and answer
Questions 1 and 3. In the final section, we present a symmetric approach that answers
Question 3 directly without reference to the answers to Questions 1 and 2.

n = 4: How long must New Alarkania wait?

In this section we will work out the case of four players from scratch using only basic
probability; however, some of the notation and theory for later will become evident as
we go along. As mentioned above, we organize the possible configurations into stages
according to the number of teams left; thus we proceed in reverse order from Stage 4
(four individuals, [1111]) down to Stage 1 (a single team of four, [4]).

Starting at Stage 4 ([1111]), note that in the first week, one player must lose and
join the winner’s team. Therefore, the expected time to Stage 3 is exactly es3 = 1
week. The configuration at Stage 3 is necessarily [211], one team of two players and
two individuals.

Now, from [211], the loser can be one of the players on the team of two, in which
case the new configuration is still [211]. (If the winner is the other player on the team,
then there is no change at all; if the winner is one of the two individuals, then the
loser joins that individual, making a new team of two and leaving the loser’s former
teammate as an individual.) If the loser is one of the two individuals, however, we will
go down to Stage 2. The new configuration depends on who the winner is, but we note
first that since there is a % chance of the loser being one of the two individuals, the
expected waiting time is exactly e;; = 2 weeks.

When we do first get down to Stage 2, what configuration will we land in? We know
that the loser in the previous week was one of the two individuals. There is a % chance
that the winner was a member of the team of two, in which case we land in [31]. There

isa % chance that the winner was the other individual, landing us in [22]. We thus have

an answer for Question 2 at Stage 2: We say L, := (3 1) is the landing vector at

Stage 2, representing the probabilities that when we first arrive in Stage 2, we land in
[31] or [22] respectively. (We had landing vectors at the previous stages as well, but
because there was only one configuration in each stage, they were simply the trivial
vectors Ly := (1), L3z := (1).)

Finally, we calculate the expected time e;; to go from Stage 2 to Stage 1. Here are
the possible outcomes from configuration [31]:
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Probability Outcome Explanation

Stay at [31]. Winner and loser are both from the team of three.

Move to [22]. Winner is the individual.

Bl— Bl— RI—

Move to [4]. Loser is the individual.

And here are the possiblities from [22]:

Probability Outcome Explanation
% Move to [31]. Winner and loser are from different teams.
% Stay at [22]. Winner and loser are on the same team.
0 Move to [4]. Not possible in one week.

We collect these probabilities in a matrix, denoted A,, for later:
(311 [22] [4] [31] [22] [4]

[31] 1 ) [31] !
= A,

[22] 0 (22] 0
To find the expected time e,; to go from Stage 2 to Stage 1, let x; be the expected
time to go from [31] to [4] and let x, be the expected time to go from [22] to [4]
(necessarily via [31]). If we start at [31] and let one week go by, there is a % chance
that we will stay at [31], giving us a new expected time of x; plus the one week that
just elapsed. There is a }1 chance that we move to [22], giving us a new expected time

of x, plus one. Finally, there is a }‘ chance that we move directly to [4], making the
time exactly one week. We summarize this as an equation:

WIN N —
W= A=

1 1 1 1 1
Xy = Z(xl +1)+§(X2+1)+Z(1) =30 +§X2+1

Starting at [22] and letting one week elapse gives us a similar equation:

2 1 2 1
Xy = g(xl + 1) + 5(X2+ 1)+0(1) = gxl + §XZ+1

Combining these equations gives us a matrix equation that is easy to solve:

Recalling the landing vector of probabilities that we arrive at Stage 2 either in [31] or
[22], the expected time to go to Stage 1 is then

1
e = (% %) ( ; ) = 6 weeks.
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Finally, the total expected time to go from Stage 4 down to Stage 1 is the sum of the
expected times at each stage, e43 + €3 + ey = 1 +2 4+ 6 = 9 weeks, or (n — 1)? for
n=4.

Besides answering Questions 1-3 for New Alarkania, this small example already
showcases several features that will be reflected in larger cases later:

* We depended heavily on linearity of expectation to break the total expected time into
a sum of expected times e, ,_; to go from each Stage ¢ to Stage t — 1.

* Stage 2 (and for larger cases, almost all stages) consisted of multiple possible con-
figurations, [31] and [22]. We described our arrival at Stage 2 in terms of a landing
vector of probabilities L, := (% %) that we would first land in each configuration.
These landing vectors are the answer to Question 2, but this one small example is

not enough to see the general pattern.
* We can compute the expected time to go from Stage ¢ to Stage t — 1 as

€rr—1 = LI — At)_ll,

where L, is the landing vector of probabilities for the configurations in Stage ¢, A,
is the matrix of internal transition probabilities between the various configurations
in Stage ¢, and 1 is a column vector of ones of the appropriate length.

* In this small example, the expected times were all integers, e;3 = 1, €35 = 2, and
e;1 = 6. That won’t generalize, but they will follow a most interesting pattern. (We
invite you to guess it now, with the reminder that the times for the case n = 5 are
ess = 1, e5 = % ey = 1—30, and e;; = 10, giving a total time of 1 + % + %O + 10 =
16 = (n — 1)? weeks.)

Keeping the lessons from n = 4 in mind, we now move on to address the general
problem.

Notation and examples

Fix a value of n. We will consider the various partitions of n to be the states of the
system. We will use both partition notation, where we list the parts as n; + n, +
.- - 4 ny, which we will abbreviate as nn, - - - ng, and vector notation, where we list
the number of parts of each size as (rjr,---ry), so Y ir; = n. (When using vector
notation, we will always assume that the last entry is nonzero.)

Let S(n, t) be the set of partitions of n into ¢ parts, i.e., the set of all possible
configurations at Stage ¢. Then the set of all partitions of n is U;_, S(n, t). We list the
sets S(n, t) in reverse order from ¢t = n to t = 1, and we assume that each S(n, t) is
given a consistent internal ordering.

For example, let n = 6. Then the states in partition notation are

([111111], [21111], [2211, 3111], [222, 321, 411], [33, 42, 511, [6]},

and, respectively, in vector notation are

{[®1. [(4D], [(22), BOD)], [(03), (111), (2001)],
[(002), (0101), (10001)], [(000001)]}.

Let P be the probability transition matrix between the various possible states. Then
P is block upper bidiagonal, where each diagonal block is A,, the probability transition
matrix from states in Stage ¢ to each other, and each superdiagonal block is A, ,_;, the
probability transition matrix from states in Stage ¢ to states in Stage t — 1.
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For n = 6, using the ordering above, we have the following matrix:

Ag | Ass
As | Asy
Ay | Ag
pP=
Az | A
Ay | Ay
Ay
0130
1012 8
12 8(2 8 0
960 6 9
1 6 24 0| 0 O O
=35 316 6] 2 3 0
30 0O 8 12, 0 2 8
12 18 0| O
8 14 8| O
0O 5 20| 5
30

For example, the middle rows of A; and Aj, are obtained by noting that of the 30
possible choices for winner and loser from the partition 321 (in vector notation, (111)),
3 lead to the partition 222, 16 to 321, 6 to 411, 2 to 33, 3 to 42, and none to 51 (in
vector notation, (03), (111), (2001), (002), (0101), (10001), respectively). We invite
you to check the other values.

Probability vectors and multinomial coefficients

We define the landing vectors L, recursively as follows. First, we set L,, := (1) since
we must start in Stage » in state (n). Now, for n > ¢ > 2, assume that we start in one of
the states in Stage ¢ with probabilities given by the entries of L,. We then define L,
to be the row vector whose jth entry is the probability that our first arrival in Stage
t — 1 from Stage ¢ is in the jth state in Stage t — 1.

Thus, in the example above with n = 6, we have Ls = (1), Ls = (1), and L, =

(:5j %) because when we move from Stage 5, necessarily starting at (41) (in vector

notation), to Stage 4, we have a % chance of arriving in state (22) and a % chance of
arriving in state (301).

To calculate the L,’s, we define P, ,_; to be a matrix in which each row corresponds
to a state in Stage ¢ and each column to a state in Stage ¢+ — 1. Entry (i, j) in P, ,_;
is defined to be the probability that, given that we start in state i in Stage ¢, our first
arrival in Stage ¢ — 1 is in state j. By a similar derivation to the one we used in the
example with n = 4 above, we have

Pt.t—l = (I - At)ilAt,t—l’

where [ is the identity matrix of appropriate size. (This is also a standard result in the
theory of Markov chains; see Theorem 3.3.7 in [2].)
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We can now compute the L,’s recursively:
Ly =LP,i=LUI—-A)"A, .
For example, with n = 6, we have
Ls = Le(I — Ag) "' Aes = (D(1(1) = (1)
Ly=Ls(I—As)"Ass =) (3) (3 =) =02
Ly = Ly(I — Ay 'Ass

(O]}
~~—

3 3 1 3
> \3 /N0 5 &%
=(% 3 1)

and so on.
We define V S(n, 1) to be the vector space whose basis is the set of partitions S(n, t)
in Stage t. Using vector notation for partitions, for

I'Z(rl r rk)GS(n,t),

we define the multinomial coefficient

( t ) t!
my (= = -
ri,ra, ..., rp l"l!l"z!"'l"k!

(Undergraduates will recall multinomial coefficients from combinatorial exercises
about rearranging the letters of words like MISSISSIPPI; see Section 5.4 in [1] for
details.)

Finally we define the vector u, € V S(n, t) by

u = E myr

reSn.r)

and consider it as a row vector whose entries are the m,’s.
We can add the entries of a vector by multiplying it by 1, the column vector of
appropriate size whose entries are all ones.

REMARK 1. The sum of the coefficients of u, is
wl Z n—1
= mr = .
' r—1
reS(n,)

Proof. One way to list the partitions of n into ¢ parts is to make a line of n pebbles
and then insert t — 1 dividers into the n — 1 spaces between the pebbles; there are (’::11)
ways to do this. However, most partitions will be counted multiple times in this list
since the parts can appear in any order. In fact, the partition r = (rl ry e rk) €
S(n, t) will appear exactly

( t > t!
mrz =
Fiyra, ..., Ik }"1!7'2!'~-rk!

times, giving the desired result. ]
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For example, with n = 6, we have the following:

ug = 1(6) = (1); usl =1
us = 5(41) = (5); usl =5
uy = 6(22) +4(301) =(6 4); wl =10
u; = 1(03) +6(111) +3(2001) = 6 3); wl=10
u, = 1(002) +2(0101) +2(10001) = (1 2 2); w1 =5
u; = 1(000001) =(1); uyl=1

Note that we have u,1 = ( , N 1), as predicted by Remark 1. Note also that the nor-
malized version of u3 is

1 1
a0 6 3)=G 5 w =L

and the same is true for the other u,’s and L,’s. This elegant pattern for the landing
vectors is the answer to Question 2, but we need several more theorems to justify it.
The first two state that the u, are eigenvectors for the probability transition matrices
A;, and they are also “chain eigenvectors” in the sense that u, A, ,_ is a scalar multiple
of u,_;:

THEOREM 2.

—t t—1
WA, = u.d;,, whered, .= (n = 1)n + ).
nn—1)

We will discuss the proof of Theorem 2 below.

COROLLARY 3. w, is a left eigenvector for the matrix (I — A,)~" with eigenvalue
1
1—d;*

THEOREM 4.

WA ;1 =Ww_1h,, where h, := w
nn—1)

Surprisingly, in our work later, we will only use the fact that u; A; ;_; is a multiple of
u,_;; the actual value of 4, is immaterial. We will explain this after Theorem 8 below.

The proof of Theorem 2 (respectively, Theorem 4) depends on some careful combi-
natorial bookkeeping. We will suppress the computational details of the proofs, partly
because of the tedium involved and partly because we have an independent way to
answer Question 3 that we will present in full detail later. Instead, we will just give a
sketch here and then illustrate with a numerical example.

The main idea of both proofs is to track which states s € S(n, t) (respectively, s €
S(n,t — 1)) can be reached directly from which states r € S(n, t), which we denote
by r — s. Forr — s, we define 4(r, s) to be the number of possible winner-loser pairs
in state r that will take us to state s, that is, the numerator of the corresponding entry
in A, (respectively A, ,_;), where the denominator is n(n — 1).

The key step in the proof of Theorem 2 is then to switch from summing over r to
summing over s:
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WA = Z myrA, by definition of u,
reS(n,t)
1
=D Z Z m8(r, s)s by the action of A,
n(n - ) reS(n,t) {s:;r—s}
1
= PYPSEE Z Z mqé(r, s)s switching the summation
n(n - ) seS(n,t) {rir—s}
1
- Z n—1)(n+1t—Dmes  (see below)
n(n - 1) seS(n,t)
—1 tr—1
= (n =D+ ) by definition of u,
nn—1)

The work is in justifying the second to last equality above that
Z mS(r,s) =t(n —t + ms.
{r;r—s}

This requires several pages of unenlightening calculation. The proof of Theorem 4
is similar, and similarly tedious. We have spared you the full details, and instead we
will illustrate with a larger concrete example. Let n = 10 and ¢ = 4; then in partition
notation we have

S(10,4) = {3331, 3322, 4321, 4411, 4222, 5311, 5221, 6211, 7111}
S(10, 3) = {433, 442, 541, 532, 631, 622, 721, 811}
and in vector notation we have
S$(10,4) = {(103), (022), (1111), (2002), (0301), (20101), (12001),
(210001), (3000001)}
S(10, 3) = {(0021), (0102), (10011), (01101), (101001), (020001),
(1100001), (20000001)}.
Then
u4=(4 6 24 6 4 12 12 12 4),
u3=(33666363)

with uyl = 84 = (g) and uz1 =36 = (g), as predicted by Remark 1.
The corresponding blocks of the transition matrix are

18 95 0 0 0 0 0 0/90 00 00 0 0
8 40 24 018 0 0 0 0/00 00 00 0 0

8 44 6 3 812 0 0/23 04 00 0 0

1l o 01624 032 0 0 0ofo2160 00 0 0

(A4 |Ai)=—] 02424 018 024 0 0/00 00 00 0 O0f
9 0 01015 026 615 0[00 62100 0 0

0 020 0 5 8282 0/00 04 05 0 0

00 0 0 012 12 36 12|00 00 4 2 12 0

00 0 0 0 0 02 42/00 00 00 6 21

Note that ugA4 = u4% = wyds and ug Az = u3% = u3hy, as predicted by Theorem 2
and Theorem 4.
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We can now justify our answer to Question 2:
THEOREM 5. For all t, the landing vector L, is the normalized u,, that is,
1
L, = ﬁu,.

Proof. First, we note that L, = (1) = u,,. Proceeding downwards by induction, we
assume the theorem for L, and show it for L,_;:

L,_y=L;P; by construction of L,
=L, - A,)*lAm_l by construction of P, ,_;
1
= —lu,(l — A,)*IA,,,_l by the induction hypothesis
u;
1 1
= ﬁ?dtutA”_] by Corollary 3
! ! h by Th 4
= ——u,_ eorem
wll—q Y

This shows that L, ; is a scalar multiple of u,_;. But since we know that L,_; is a
probability vector, i.e., that its entries sum to one, we must have that

1

L., =
—1 w1

U1,

as desired. [ |

REMARK 6. The proof of Theorem 5 gives an alternate way to find u,1.

Proof. We can find a relationship between u,_;1 and u,1:

h 1
L,_11= S | from the proof above
1 - dt lltl
h, 1 ) . -
1= —u, 1 since L,_; is a probability vector
1—d ul
1 - dt . . .
u_1= u,1 by cross multiplication
t
t—1 ..
=—ul by definition of d, and A,
n—t+1
This gives us the recursive system
ul=1
-1 -1
lln,11 = " llnl = n
1 1
-2 —2n—1
un721 = z lln,11 = z z
2 1

t n—2n-—1 n—1
wl= — ,
n—t 2 1 t—1

confirming our result from Remark 1. ]
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Expected times

We are now ready to answer Questions 1 and 3. Recall that L, is the row vector whose
jthentry is the probability that our first arrival in Stage ¢ — 1 from Stage ¢ is in the jth
state in Stage t+ — 1. We define ¢,,_; to be the expected time from our first arrival in
Stage ¢ to our first arrival in Stage t — 1. We have an immediate answer for Question 1.

THEOREM 7.

nin—1) (g)

1 R L2

T=D ()

€rr—

Proof. When we worked out the case for n = 4 we derived a formula for e, ,_; that
clearly generalizes to larger cases. (This is a standard result in the theory of Markov
chains; see Theorem 3.3.5 in [2].) We proceed from that formula:

e 1 =L - Ar)_ll

1
=1L, T4 1 by Corollary 3 and Theorem 5
- Ut
1 . .
= L1 since is a scalar
1—4d, 1—4d,
1 . . .
=1_4 since L, is a probability vector
— Uy
-1
= n(n— 1) by definition of d; u
tt—1)

We now just add the times at each stage to answer Question 3:
THEOREM 8. The expected time to the final state is (n — 1)*.
Proof. We use a partial fraction expansion:

n n

nin—1)
Z err—1 = Z m by Theorem 7
=2 =2
( 1) 2”: ! ! a telescoping series
=nn — — =),
2N\ =171 pine
1
=nn— l)<1 — —>
n
=n—1)* []

One slightly surprising element of the proofs above is that we never used the for-
mula for the “chain eigenvalue” i, from Theorem 4. (We did use the value of /4, in the
proof of Remark 6, but Remark 6 was not used to prove anything else.) This is less
surprising when we realize that the value of 4, can be derived from the value of d, by
the following method, which is independent of the formula in Theorem 4. Note that
the row vector L, (A, A, ,_1) gives the complete set of probabilities of landing in the
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various states in Stage ¢ and Stage t — 1 one step after landing in Stage ¢. Accordingly,
the entries in this row vector add to one. But we can calculate this vector:

L,A, = L.,d, by Theorems 2 and 5
1
LA 1 =w——A by Theorem 5
ul -
h,
=u_|— by Theorem 4
ul
_1bhh
=1L, M by Theorem 5
u,1

Therefore,

L, (A, A,,,_l) 1=1 by the discussion above

_1Dhha
<L,d, L, (ut;l)t> 1=1 by the calculations immediately above

u;
(w,_ A, . .
d, + a1 =1 since L, and L,_; are probability vectors
u,
t—Dh
d; + g =1 by Remark 1.
n—t+1

Thus, d, and h, are dependent on each other, and if we use a particular value of one,
then we are also implicitly using the corresponding value of the other. And note that
the value of d, did indeed play a key role in the proof of Theorem 7 above.

A symmetric approach

Although we think the answers to Questions 1 and 2 are interesting in their own right,
we can derive the answer to Question 3 independently without going through the cal-
culations above. In particular, this method does not rely on the proofs of Theorems 2
and 4.

We start with n players, each of whom initially represents a different field. We
arbitrarily choose one field to focus on, say, statistics. At any point in the game, we
define a set of random variables xy, . .., x,, where x; represents the number of future
wins by statisticians, given that there are i statisticians currently remaining. (Note that
it does not matter what the configuration of the other n — i players into teams is.) We
have easy boundary values: x, = 0, since if statistics has been wiped out as a field,
then there can be no future converts to statistics; and x,, = 0, since if everyone is now
a statistician then the game is over.

We now set up a system of equations for the other x;, 1 <i <n — 1. In each round,
there are n(n — 1) choices for the winner and loser. With i statisticians currently, there
are four possibilities for how the winner and loser can be arranged with respect to the
statisticians:

1. Both winner and loser are statisticians. There are i (i — 1) ways this can happen.
The number of wins by statisticians has gone up by one, and the new expectation
at the following round is again x;, since we again have i statisticians.

2. Only the winner is a statistician. There are i (n — i) ways this can happen. The
number of wins by statisticians has gone up by one, and the new expectation at the
following round is x;,, since we then have i + 1 statisticians.
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3. Only the loser is a statistician. There are i (n — i) ways this can happen. The number
of wins by statisticians is unchanged, and the new expectation at the following
round is x;_;.

4. Neither the winner nor the loser is a statistician. There are (n — i)(n — i — 1) ways
this can happen. The number of wins by statisticians is unchanged, and the new
expectation at the following round is again x;.

This gives us the following equation:

G in—i)

xi—m( +Xi)+m( + Xis1)
i(n—1i) n—iYn—i—1)
YR TP s

Mercifully, this simplifies rather dramatically:

n—1

2x; — (xi—1 + Xig1) = —

This gives us a linear system for the x;’s:

2 -1 0 - 0 1 11
-1 2 -1 0 X =
O —1 2 0 X3 — n—1
. n—3

0O 0 0 --- 2 Xn—1 n—1

We denote the (n — 1) x (n — 1) matrix on the left by M,,. It is an amusing exercise to
compute M, L. for example, with n = 6 we have

2 —1 543 2 1
1 2 - (4 8642

Mg = -1 2 -1 , M'=-13 6 9 6 3
1 2 - 612 4 6 8 4

1 2 1 23 45

The pattern in the right-hand matrix is that the (i, j)-entry is i (n — j) for entries above
the main diagonal and j(n — i) for entries below. In other words,

i r . .
(M )i’j = ;mm{z,;}[n — max{i, j}].

n

To answer Question 3, we need to know the expected number of future wins by statis-
ticians at the very start of the game. We start with one statistician, so we solve our
system for x; using the first row of M, !:

X1 1
X5 n—1

_ n—2
=M ]

n

Xn—1 n—1
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A (1 =1 1T
xn=-(n n ) I

n
:%[(n—l)-i—(n—l)—l-“-—i-(n—l)]

(n—1)°
n

We have just computed the expected number of total wins by statisticians. By symme-
try, every other field expects the same number of wins, so the total number of rounds of
the game (again, exploiting linearity of expectation) is n@ = (n — 1)2. This con-
firms our answer to Question 3 from the small games and the derivation in the previous
section.

Finally, we address the temptation to hope that a Markov chain with such a nice
expectation might also have an interesting variance. Following Theorem 3.3.5 in [2],
we can compute the variance of the time to absorption via the matrix N := (I — A)~!,
where A is the submatrix of P obtained by deleting the final row and column, which
correspond to the absorbing state. We then define the column vector v := N1 (the
expected time to absorption from each state), and let 74 be the column vector whose
entries are the squares of those in t. Then [2] tells us that the variance of the time to
absorption is the first entry of the vector

T = 2N — D1t — 7.

For n = 2, 3, 4, the variances turn out to be 0, 6, and 32, raising the hope that an
interesting sequence of integers might ensue. Sadly, forn = 5 and n = 6, the variances

are % and ?, respectively. We challenge you to discover, prove, and interpret the

general pattern!

Acknowledgment  We thank John Brevik for suggesting this problem and Kent Merryfield and Peter Ralph for
useful conversations.
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Crosscut Convex Quadrilaterals

RICK MABRY
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Shreveport, LA 71115
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In all that follows, A is an arbitrary convex plane quadrilateral; let’s call such a polygon
a quad. We let the vertices of A be given cyclically by the four-tuple (Ag, A, Ay, A3)
and name a midpoint M; on each segment (A;, A;;;), taking all subscripts modulo
4, as in FIGURE 1. We then crosscut quad A by drawing medians (A;, M; ). These
medians intersect one another at the vertices of a new “inner quad” B3 in the interior of
the “outer quad” A.

Figure 1 Crosscut quad A with shaded inner quad B

Our results are inspired by the well known, pretty result ([1, p.49], [8, p.22]) that
if A is a square, then

Al =518], (M

where |-| denotes area. (See FIGURE 2. In this case it is clear that 5 is also a square.)
It follows from familiar facts about shear transformations that (1) remains true when
A is a parallelogram. That (1) does not hold in general is easily seen by letting one

Az Ay

Ao A

Figure 2 The classic crosscut square
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vertex of A approach another, in which case the shape of A approaches that of a
triangle. In such a limiting case we get

Al =6|8], (@)

a fact that we leave as an easy exercise for the reader. (See FIGURE 3, where our four
medians have coalesced into two medians of a triangle, these meeting at the triangle’s
centroid.) We will continue to refer to such a figure as a quad, albeit a degenerate one,
and this will be the only type of degeneracy we need to consider—two vertices of a
quad merging to form a nondegenerate triangle. Otherwise, a (nondegenerate) quad
shall be convex with four interior angles strictly between zero and 180 degrees.

A3 Ay

Ao Ay

Figure 3 A degenerate case of two coincident vertices

It will be shown presently that the general case lies between (1) and (2). Actually,
we prove a bit more:

THEOREM 1. For an arbitrary outer quad A, the following properties hold.

(a) The inner quadrilateral B is a quad and
5Bl < |Al < 618B. 3

(b) |A| = 5|B| if and only if B is a trapezoid.
(¢c) | Al = 6|B| if and only if A is a degenerate quad with two coincident vertices.

Theorem 1 has gathered dust since 2000 (or earlier—see the Epilogue) while the
author occasionally tried, to no avail, to find a “Proof Without Words” (PWW) of (3)
or some other visual proof, as is done in [1] and [8] for the case of a square. Later
in this note a fairly visual proof will be given that B being a trapezoid implies that
|A| = 58], but that is far from the entire theorem. In part, the purpose of this note is
to open this challenge to a wider audience.

In the meantime, we do have a few other visual propositions to offer. In the fol-
lowing three results and their proofs (WW), the values being added, subtracted, and
equated are the areas of the shaded regions of an arbitrary (fixed) quad A.

PROPOSITION 1. (STRIPS EQUAL HALF OF QUAD)

N> N
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PWW of Proposition 1.

PROPOSITION 2. (PAIRS OF OPPOSING FLAPS ARE EQUAL)

PWW of Proposition 2.

AN A - A A

PROPOSITION 3. (CORNERS EQUAL INNER QUAD)

PWW of Proposition 3.

A - AN

£ - AN

The greatest visual appeal in this note might be concentrated in Proposition 3. It
is a challenge (left to the readers and unfulfilled by the author) to prove some of the
other facts in more visual ways, especially Theorem 1. Meanwhile we apply some easy
vector-based methods that have some sneaky appeal of their own. Complex variables
can be used to the same effect.

Notation, convention, and basic calculation First let’s set some notation. Given a
sequence Py, Py, ..., P, of points in R, we let (Py, Py, ..., P,) denote either the
ordered tuple of points or the polygon formed by taking the points in order. We shall
assume that when (Py, Py, ..., P,) is given, the sequence is oriented positively (coun-
terclockwise) in the plane, with this one exception: If the tuple is a pair, then we con-
sider it directed so that we may use it as a vector as well as a line segment, the context
making clear which. So, for instance, we write A = (Ao, A;, A,, A3), and likewise we
take B = (By, B1, B, B3) for our inner quad, where B; = (A;, M;») N (Ai11, M;13).
We let |(Py, Py, ..., P,)| denote the area of the polygon (P, Py, ..., P,),but |(P, Q)|
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will denote the length of a segment or vector (P, Q). Likewise, |w| will denote the
length of any vector w. As usual, a point P is identified with the vector (O, P) via the
usual canonical identification once an origin O is selected.

Areas are calculated using the magnitude of the cross product. It will be convenient
to abuse notation slightly and, for x = (x, x;) and 'y = (y;, y2), set X X y = x1y, —
X2Y1-

The area of any triangle is then |(X, Yy, z)| = %(y — X) X (z — x), which is positive
because of our orientation convention mentioned earlier.

For arbitrary Py, Py, P,, P3, the polygon formed from the sequence is a nondegen-
erate convex quadrilateral (and therefore also simple, that is, with no self-crossings)
if and only if (P;, P;+1) x (P11, P;42) has constant positive or constant negative sign
for each i (mod 4). (An analogous statement cannot be made for convex n-gons with
n > 5—consider the pentagram, or, if the fewest crossings are desired, have a look
at a “foxagon” like ({0, 0), (3,9), (—1,5), (1,5), (—3,9)).) We will appeal to cross
products to verify the convexity of a certain octagon that arises in our figures.

Diagonals rule Any two fixed, independent vectors u and v in the plane correspond
to the diagonals of infinitely many different quadrilaterals, as is illustrated in FIG-
URE 4, where the diagonals of the quadrilaterals shown generate identical vectors.
Clearly, such quadrilaterals need not be quads—shown in that figure are a nonconvex
and a nonsimple quadrilateral (neither are quads) and two quads, one being a parallel-
ogram. To ensure convexity, it is necessary and sufficient that the diagonals intersect
each other. We accomplish this in the following way. Let the origin O be the intersec-
tion of the diagonals, and for scalars s and ¢, set

(A(), Al, Az, A3) = ((1 — S)ll, (1 — I)V, —su, —t V), (4)

as in FIGURE 5. When s and ¢ in [0, 1] the quadrilateral will be convex; it will be a
quad when s and ¢ are in (0, 1). The diagonals (A, A,) and (A, A3) have lengths |u|
and |v|, respectively.

. N

| L mgu (1 —nu N\
u v y

u Ao A
Figure 4 Two linearly independent Figure 5 Splitting u, v with s, t to spec-
vectors u and v form (nonuniquely) the ify a unique quad

diagonals of a quadrilateral

It is a simple matter to compute the area of any simple polygon by triangulation
(partitioning the polygon into triangles). For a simple, positively oriented quadrilateral
Q = (Qq, Q1, 02, Q3) one may also use the familiar fact that |Q| = % (Qo, 0») x
(Q1, 03). It is then clear that in the case of our main quad, |A| = %u X V.

We exploit the fact that all of the vertices of the polygons that appear in the context
of crosscut quads are linear combinations of u and v, with rational functions of s, ¢
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as coefficients. Therefore, since u x u = v x v = 0, all of our polygonal areas take
the form F'(s, t) u x v for some rational function F of s, . All our results derive from
F(s, t), as we could scale our figures to haveu x v = 1.

Proof of Theorem 1. First note that 3 is indeed convex, being the intersection of
two (clearly) convex sets. To compute |5|, we first find expressions for the points B;.
First, we have that By = (A, M) N (A, M3), where M; = %(Ai + A;;1). There are
then scalars g, r € (0, 1) for which

By=Ap+qM> — Ayp) = A +r(M;z — Ay).

This implies that
q r
E((Az — A+ (A3 —Ag)) = A — Ap + 5((143 —AD + (A — AY)),

hence, by (4),

%(—u—tv—(l—s)u):(l—t)v—(l—s)u—l—%(—v—k(l—s)u—(l—t)v).

The linear independence of u and v allows us to separately equate their coefficients to
solve for ¢ and r, obtaining

g=2(1—-s)/4—-2s—1t) and r=2Q—s—1)/(4—2s —1).

(The most diligent of readers will pause to verify that both ¢ and r lie in (0, 1) when s
and ¢ do.) We can use g (say) to calculate

1-s5)2—-s—1) (1 —s)t

Bo= Aot M= A = Y T Y

Once B is obtained, the symmetry of our construction in FIGURE 5 can be used to
compute the remaining B;—our convention for indexing points ensures that P, =
(—y(@, 1 —35), x(t,1 —s)) when P; = (x(s,t), y(s,t)) is given.

We can now calculate the area of B. We could use the formula for the area of a
quadrilateral already mentioned, but instead we’ll employ the result of Proposition 3,
as we’ll make use of the result later. Denoting by C; the corner triangle (A;, B;, M;_1),
we easily compute

1—
ICol = (Ao, By, M3)] = ﬁ(u X V). 5)
Again, symmetry can be used to compute the remaining three corner areas from the
first; generally, if |R;| = g(s, t), then |R; 4| = g(¢, 1 — 5). (The fact that (—v) x u =
u x v is used for this.)

Now we break out the algebra software (if we haven’t already) and find, using |B| =

ICol + ICi| + 1C2| + |C5], that

5(2—3s+s>4+4st—2t7) (4s +1 — 25> —4st + 12

(uxv). (6)
2 —5s+2t)3+s —2t)(4—-2s —t)(1 +2s + 1)

It is now a routine exercise to show that for s, t € (0, 1), each of the factors above
is positive. This shows that 6 |3] > |.A| . Similarly, we can compute

(1 —=3s+1)*2—s5 —31t)?

A =SBl = e T mees—ma—s—nasusno " @
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which is clearly nonnegative on [0, 1] x [0, 1]. Part (a) of the theorem is now estab-
lished.

Part (b) of the theorem is fairly easy in view of the fact that (7) shows that
|A] —5|B| =0if and only if 1 —3s +¢ =0 or 2 — s — 3¢t = 0. Consider the easily
verified fact that

(Bo, B1) x (By, B3)

(1—3s+t)(2s—|—t—s2—st—l—t2)(2—|—s—2t—s2—st—i—tz)( )
- 2—s+20CB+s—20@G—2s—n(I+25+1) uxv:

None of the factors, other than 1 — 3s + ¢, is ever zero for s, r € (0, 1); and it follows
that for a crosscut quad A, the segments (By, B;) and (B,, B;) are parallel if and only
if 1 — 3s + ¢t = 0. Similarly (after all, there is a symmetry at work here), one finds that
(By, By) is parallel to (By, B,) if and only if 2 — s — 3¢ = 0. This establishes part (b).
(We can also see from this that 3 is a parallelogram if and only if | —3s +¢ =0 =
2 — s — 3t, which happens if and only if s = = 1/2, which is in turn true if and only
if A is a parallelogram.)

Finally, for part (c), it was probably noticed earlier that for all s, ¢ € [0, 1], all the
factors in the denominator of (6) are > 1 and that the numerator is zero if and only if
(s, t) is one of (0, 0), (1, 0), (0, 1), or (1, 1). It is clear from our construction that each
of these four cases is equivalent to the (degenerate) situation of the merging of two
vertices of A. (For example, A, = A3 when (s, ) = (0, 0), as in FIGURE 3.) [ ]

Diagonal triangles There are probably many amusing relationships lurking among
the various pieces of our crosscut quad. As an example (found, as with the others, by
messing around with Geometer’s Sketchpad), our next theorem contains a cute result,
whose visual proof, too, we abandon to the reader.

First a few easy preliminaries. The diagonals of a quad partition the quad into four
triangles. With O being the intersection of the diagonals of A (the origin mentioned
earlier), we define the diagonal triangles D; = (A;, O, A;_,). If the diagonals of A are
added to the picture, as in FIGURE 6, it is clear that the points B; must always lie within
the respective D;. Incidentally, it is a simple exercise to show that the centroids D; of
the D; form a parallelogram whose area is (2/9) |.A|. (Engel [4, prob. 69, sec. 12.3.1]
shows that this result holds when O is any point in the quad.) Also known is that the
products of the areas of opposing diagonal triangles D; are equal. That is,

D1l 1Ds| = Dol | Dl ®)

which is easily checked by noting |Dy| = (1 — 5) #/2 and its cyclic counterparts. (A
PWW lurks in FIGURE 5. In fact, (8) holds when O is any point on a diagonal of a
quadrilateral AgA;A,Aj, regardless of whether the quadrilateral is convex or simple.
Cross products are superfluous.)

Corner triangles Another odd relationship involves ratios of areas of corner triangles
to diagonal triangles. It may be unrelated to (8), but it has a similar flavor.
THEOREM 2. For an arbitrary quad A,

Dol | IDa| D1l | D3|

= = 10.
ICol — 1Gl 1G] 1G]

Proof. Notice that the areas of the D; are the numerators of the formulas we have
for the areas of respective triangles C; (see (5)). These cancel in each of the ratios
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Figure 6 The D;, individually shaded, Figure 7 A convex octagon of cen-
and the parallelogram of their centroids troids
|D;i1/|C;il. Thus,

Dol | 1D

—— 4+ —5—=24-2s—1t)+2(1 +2s +1) = 10.

1Col — 1Cal

It is unnecessary to write a similar formula for the second sum, as it follows by sym-
metry. ]

A convex octagon In FIGURE 7, the centroids of the nine partitioned regions of
our crosscut quad are shown. The outer eight form an octagon: Let F; = (A;, M;,
Bi11, B;),i =0, 1, 2,3, denote the flaps and let C; and F; denote the centroids of the
corners C; and the flaps JF;, respectively.

THEOREM 3. The octagon O = (Cy, Fy, Cy, Fy, C, F», C3, F3) is convex.

All we offer toward a proof of the convexity is the suggestion already given con-
cerning cross products. (The author’s colleague Zsolt Lengvarszky has a nice visual
proof.) It suffices to show that (Cy, Fy) X (Fo, C;) > 0 and (Fp, Cy) x (Cy, F1) >0
for every choice of s,t € (0, 1). It turns out that, using our machinations here, the
latter of these inequalities (which would appear from FIGURE 7 to be the more sensi-
tive of the two) is fairly easy, as one gets a rational function of s, ¢ with nice, positive
polynomial factors. The former also factors into positive polynomial factors, although
more work is involved and one of the factors is of degree five in s, . We claim very
tight bounds on the octagon’s relative area:

270  |A|l 216
1888 = — < — < —=10911...,
143 = |O| ~ 113

where the lower bound occurs when A is a parallelogram, the upper when .4 becomes
degenerate. (We provide no proof for this conjecture, but the author will attempt one
if offered a sufficient cash incentive.)

A look at FIGURE 6 suggests that the centroid of each of the diagonal triangles D; is
inside the corresponding ;. This too is easily shown using cross products; it suffices
to note that (Ag, M3) X (Ag, Dg) = st/6 > 0 and that Dy lies on (O, M3). The reader
is challenged to give a nice visual proof of this fact, but it cannot be denied that using
cross products is very quick indeed.

A visual proof for the trapezoid case Here now is the visually oriented proof,
mentioned earlier, that | A| = 5|B] when B is a trapezoid. (This is one direction of
Theorem 1(b).) In FIGURE 8, triangle (M, A,, A3) is rotated 180° about M; forming
(M, Ay, AY), and (M3, Ay, A)) is likewise rotated about M3 to form (M3, As, A)).
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Figure 8 B is a trapezoid with (B1, B2) || (Bo, B3)

(For a point P, denote its rotated counterpart by P’.) Now let & (not annotated)
be the perpendicular distance between segments (B, B,) and (By, B;), and let
a = |(B}, A3)l, b = |(Bo, B3)|, ¢ = [(By, By)|, and d = [(A, B})|. Then it is evi-
dent that a + d = b + ¢, and we therefore have

Al = [(B), As, AD| + |(Bf, Ar, By, As)| + (A1, AL, By

1 a+d 1
= Ea(Zh) + T(3h) + Ed(Zh)
b+c
—5< > h) =5|B|.

If a condition on A itself is desired in order that 3 be a trapezoid, perhaps the
following will satisfy. For fixed Ay, A, A3, we will have (Mg, A,) || (M3, Ag) if and
only if A; lies on the line joining the midpoint M, of (A, A;) and the point that lies
one-third the way from A; to As. This will force (By, By) || (By, B3), as in FIGURE 8.
Cyclically permute vertices for the remaining possibilities.

One can think of immediate variations and generalizations to the problems explored
in this note. Note that there is a certain chirality or handedness in our choice of cross-
cutting; FIGURE 9 gives a version with alternate medians. We leave it as an exercise to
prove that the areas of the inner quads of the two variations are equal (for a fixed outer
quad) if and only if either the outer quad is a trapezoid or one of the diagonals of the
outer quad bisects the other. Is there some visual proof of that?

Figure 9 The original and alternate crosscut quads
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To generalize, one can use other cevians in place of our medians, by letting M; =
(1 —r)A; +r A, for some fixed ratio r other than » = 1/2, as in FIGURE 10. It is
then not difficult to establish a generalization to Theorem 1, in which the minimum
and maximum for | A| / | B| are replaced by (> — 2r +2)/r? and (> —r + 1)/r3, re-
spectively. One can make more cuts to form an n-crosscut, skewed chessboard, as
in FIGURE 11 (where n = 4). Obvious analogs of Theorems 1 and 2, and Propo-
sitions 2 and 3, hold for such multi-crosscuttings. For more generality, try m X n-
crosscut, skewed chessboards. An article by Hoehn [6] suggests further problems. As
for a multi-crosscut generalization of Theorem 3, well, let’s just say that what might
seem an obvious generalization is not. (Not what? Not true or not obvious? The in-
trepid reader should venture forth.)

Figure 10 Crosscutting cevians Figure 11  4-crosscut skewed
with r=1/4 chessboard

Epilogue It turns out that a form of Theorem 1 has appeared earlier. Our diligent
referee found a reference to it [3, p. 132 (item 15.19)], which in turn names a problems
column as a source [9]. For the same geometric configuration as ours, but using our
notation, the statement in [3] gives the inequality 5 |B| < |A| < 6|5] (so it doesn’t
count the degenerate case). However, [3] also states that | A| = 5 |B]| “only for a par-
allelogram.” This is incorrect, as we have shown that this equality holds if and only if
B is a trapezoid, in which case neither .A nor B need be a parallelogram. (It isn’t clear
in [3] whether A or B is intended as a parallelogram, but they turn out to be equiva-
lent conditions.) Thus it was necessary to track down the original problem in [9] for
comparison.

The problems column in question was in Gazeta Matematicd, which is known to
every Romanian mathematician, and is near and dear to most. It is one of the jour-
nals of Societatea de Stiinte Matematice din Romdnia (the Romanian Mathematical
Society) [2]. The problem was posed by the eminent Romanian mathematician, Tiberiu
Popoviciu (1906-1975), whose contributions to mathematics are too numerous to men-
tion here. He is immortalized also by the Tiberiu Popoviciu Institute of Numerical
Analysis, which he founded in 1957 (a short biography appears on the institute’s web-
site [7]).

Locating the problem, printed in 1943 (surely a difficult year), was not easy, as no
library on the WorldCat® network has the volume. Fortunately, the entire collection
is available in electronic form [5]. The generous help of Eugen Ionascu (Columbus
State University) was enlisted, first to find someone who has access to the electronic
format, and second for a translation into English (the text is Romanian). The translation
revealed that, in Gazeta, Popoviciu gives the inequality as 5 |B| < |A| < 6|B| and
challenges the reader to prove the inequality for all convex quadrilaterals A and to
determine when equality holds. That seems to be the last mention of the problem. If
there is a follow-up in later issues of Gazeta Matematicd, it is hiding well. (It would
be nice to know the solution intended by Popoviciu, which is likely more elegant than
ours.)
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Hearing of the search for the 1943 Gazeta, Aurel Stan (at The Ohio State University
at Marion) had the following reaction. “Gazeta Matematicd is one of the dearest things
to my heart, although for many years I have not opened it, and I feel that I have betrayed
it. It is one of the oldest journals in the world dedicated to challenging mathematical
problems for middle and high school students. It has appeared without interruption
since 1895.” The Hungarian journal Kozépiskolai Matematikai Lapok (Mathematical
Journal for High Schools) has a similar mission and has been published since 1894
except for a few years during WWIL. Professor Stan continues: “Even during the two
world wars the Romanian officers who had subscriptions had it [Gazeta] delivered to
them in the military camps. It is probably the main reason why today so many foreign-
born mathematicians in the United States are from Romania. We all grew up with it.
Each month I waited for the newest issue.” Professor Ionascu concurred with these
sentiments, and described getting hooked on the journal in the seventh grade. Hungar-
ian colleagues say similar things about Matematikai Lapok. Professor Stan mentions
that even during the time of the Communist regime in Romania, there was a high level
of mathematics and respect for mathematicians, adding, “We owe a big part of it to
Gazeta Matematicd.”
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From Fourier Series
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In this note we present a method for computing values of ¢ (s) for integers s > 2. The
method involves Fourier series, and it succeeds in giving exact values for ¢ (s) when s
is even. When s is odd the method does not give values in closed form, but we show
how it can be extended to provide series expressions for ¢(3) (and other ¢(s)) that
converge much more rapidly than the series that defines the function.

The Riemann zeta function ¢ (s) is for s > 1 defined by the infinite series

=1
(=) — ()
n=1

Euler studied this series for integers s > 2. He was the first to find the exact value of
¢(2), which he did in 1734 by generalizing the factorization of polynomials to tran-
scendental functions and using the Taylor expansion for sin x. Later, in a 1744 publi-
cation, he gave values of ¢(s) for even values of s up to s = 26. The exact values of
£ (s) for the first six even values of s are given in the following table.

S H 2 4 6 8 10 12
C(S) 7'[_2 Tt JT_6 78 710 691712
6 90 945 9450 93555 638512875

Generally when s = 2m, m € N = {1, 2, ...} the values of the zeta function are related
to the Bernoulli numbers by the formula

w1 27"

e

By, 2)

which was also first proved by Euler. The Bernoulli numbers can be defined recursively
by

n—1
By=1, and Z(Z)Bk=0f0rn22. 3)
k=0
Notice that (2) is valid for m = 0 too, since ¢(0) = —%, if we extend the definition of

¢ (s) by analytic continuation.
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After his triumph in finding exact values of ¢ (n) for even n, Euler tried to develop a
technique for finding an exact value for £ (3), but the best he could do was to evaluate
the related series

oo

(_l)n—l _ 7.[3
2 Qn—1)3 32 X

n=1

At a later point he conjectured that

7T2
c(3) :oe(ln2)2+,3gln2

for some rational numbers « and S.

Little progress was made for a long period after Euler, but in 1978 the French math-
ematician Roger Apéry proved that ¢ (3) is an irrational number, a great increase in our
knowledge about ¢ (3). Therefore ¢(3) is now known as Apéry’s constant. It is still a
famous unsolved problem in mathematics to say almost anything more about Apéry’s
constant, or about ¢ (2m + 1) for any m € N. The best result would be to find exact
values involving 7, In 2, and other well-known mathematical constants. Lacking such,
there is value in finding rapidly convergent series for ¢(3) and for ¢ (s) for other odd
values of s.

In the following we need a relation between ¢ (s) and 7n(s), the eta function or the
alternating zeta function, defined for s > 0 by the series

& —1)n-!
n(s>=2( r (5)

ns
n=1

From (1) we get (1 — 2'7*)¢(s) = n(s), so for s > 1 we have the relation

£(s) = (1=2"")""n(s). (6)

In the next section we will confirm the known exact values of ¢(2) and ¢(4), and
generally show how we can determine ¢(2m), m € N from Fourier series for even
periodic functions. Applying these Fourier series with a special value such as x = m,
we can determine ¢ (2) and ¢(4) very simply. Using Fourier series for odd periodic
functions does not help in finding exact values of ¢(3), ¢(5), ..., in the same simple
way, but in the following section we shall indicate how to find rapidly convergent series
representations for these values.

Euler’s work is described by Ayoub [2] and Dunham [5], and Apéry’s result by van
der Poorten [7]. A good reference for Bernoulli numbers is Apostol’s article in this
MAGAZINE [1] and a good reference for Fourier series is Tolstov’s book [10]. The
series representations we derive below are known, and are described, for example, by
Srivistava [8]. As we note below, some elements of the method go back to Euler.

Evaluation of £(2m) from Fourier Series

Form € N, let f be the even 27 -periodic function given by f(x) = x*", x € [-m, 7].
Since f is continuous and piecewise differentiable, we have

fx) = %ao + ;an cos(nx), x eR, @)
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where
2 T 2 2m
Clo:—f gy = T (8
T Jo 2m =+ 1
and
2 " 2m
a, = — x"cos(nx)dx, neN. ©
T Jo

If m = 1 we get from (7), (8), and (9) that ay = 27?/3 and a, = 4(—1)"/n*, n € N,
SO

2 o0 4(—1)"
2= S AED e, xe . (10)
3 n2

n=1

Letting x = 7 in (10) gives

and thus

S| 1 2
C(Z)ZZEZZ(”Z_%>:%' (11)
n=1

Alternatively letting x = 0 in (10) we can evaluate ¢(2) via (5) and (6). Several other
proofs for £(2) = %2 are known. A good reference is Chapman [3], where fourteen
proofs are given with references. The proof leading to (11) is most similar to Proof 5
in [3]. Euler’s original proof from 1734 is given as Proof 7 in [3].

If m = 2 we get from (7), (8), and (9) that ay = 27*/5 and a, = 8(—1)"(7%/n* —
6/n*),n €N, so

b A (7t 6
xt = <+ ;8(—1) (ﬁ — F) cos(nx), x € [—m, ] (12)

Letting x = 7 in (12) gives

and by using (11)

=1 1 4 4
5(4)2252&(—7(4—#%4-87[2@(2)):%- (13)
n=1

We have now seen how we can evaluate ¢ (2) and ¢ (4) from Fourier series for a periodic
version of f(x) = x>, —m < x < form = 1 and m = 2. And of course we can
continue with m = 3,4, ... and evaluate ¢ (6), £(8), ....

Information about ¢(3) from Fourier Series

In the light of how we have evaluated ¢ (2) and ¢ (4) from Fourier series in the previous
section, it is an obvious idea to consider a periodic version of f(x) = X3, —mr<x<
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7 when we are looking for information on ¢(3). But the periodic version of x* is
not continuous, so we would not have uniform convergence of the Fourier series. So
instead we consider the odd 27 -periodic function f given by

fx)=na’x —x°, —m<x<m, (14)

which is continuous and piecewise differentiable. Thus we have

fx) = Zb sin(nx), x €R, (15)
n=l1
where
/ 3 (=D
(m*x — x¥) sin(nx) dx = 12 P neN,
so that
o (_l)n—l .
fo=12%" Ssin(w), x€R, (16)
n=1

and now the Fourier series on the right converges uniformly for x € R. Setting x = 0
or x = 7z in (16) as we did in the last sections just gives 0 = 0. Setting x = /2 in
(16) gives

— (=) n — (=D
- 12 (—) -y 7
; PN ;(2;1—1)3
or
i (_l)n—l B 7.[3
—~ (2n — 1)} o3’
which is Euler’s result, equation (4). That is the best we can do by setting x to a
particular value in (16).

It is the sine function which gives us problems, so now we choose a method where
the sine function disappears using the well-known result

f snny) T LN (17)
0 X 2

The series for f(x)/x obtained by dividing (16) by x converges uniformly. Therefore

f®, (— 1)" I [ sin(nx) > (=) 'x
/ _122 / . dx:lzn; 5 =6mn03).

0

Now using (6) with s = 3 gives
SO

4
§(3)=§n(3)=9— (18)

Because f is 2 -periodic

[} b4 & Qk+Dmr .2 — 2k _ — 2k 3
fx) dx = / (> = xYdx + Zf T ™ -« ) dx,
X 0 (

2%k—1)m X
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where
T 2 3
/ (7? = x*)dx = i,
0 3

and

/‘(2k+1)7r 7'[2()6 —2km) — (x — 2]{7'[)3

dx
k-1 X
2k 1 2
=273 [(4/«3 + 3] k e N.
Then from (18) we find
> 2k +1 2
3 4k — k)1 —4k*+ . 19
(3= Z[( yn > — +3] (19)

It is not obvious from equation (19) itself that the series on the right is convergent. It
follows from the derivation of the equation. However, we shall give another proof that
leads ultimately to another series for ¢ (3). First we rewrite (19) in a form with a more
rapidly convergent series. Setting

2k +1 2 1+ 5 2
= (4k*> — k) In + — 4P+ S =@k —k)In—2 —4k* + 2,
2k — 1 3 -4 3
and using that
1 =2
1 +X=Z X2t l<x<l1
l—x  “~2n+1
we get
i i (4k* 1)i ! AN
a; = — — - =
T 2n + 1\ 2k 3

|: n=1
e () et
— n12n+1 42 ,112 4?2
=ii( Lo ! )(i) 0)
2n+3 2n+1 42 )

from which it follows, that a; < 0, and

= 1 1 T2 S "2 1
|ak|_;(2n+l_2n+3)(4k2) EZ(4I<2) 15 41

n=1

1 ([ 1 1 1
1_§<;<k—1 2k+1)) 2’

‘We know that

nd 1
>
k=1
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and thus the comparison test shows that Y~ |a,| is convergent. We have now shown
that the series on the right in (19) is (absolutely) convergent. Inserting the result from
(20) into (19) we get

2 [09] [e.9]

472 1 Ly
3= —= 7 ZZ<2n+3 2n—|—1> (@)
472 T2 © X 1 1 "
=7_ ZZ(2n+1)(2n+3) (4k2) '

The series on the last line has positive terms, so we can change the order of summation

to get
872 o 1 1y
(=29 2.2 2n + 1)(2n + 3) <4k2>

n=1 k=1

1

27 9 ~(n+ 1)(2n + 3)4n ;

and thus we can evaluate ¢ (3) from

4% 87t o £(2n)
(B =———Y : 1)
27 9 ~ @Qn+DH@2n+3)4
where the terms depend on ¢ (2n), which, as we have seen, are given by equation (2).
Using ¢(0) = —3, we can express (21) more compactly as

5o 8T £(2n) ”
(9= 9 = 2n+1)@2n+3)4 2

If s > 1 it follows from (6) that we have ¢(s) < (1 —2!7*)~! since n(s) < 1. So
using the Nth partial sum of the infinite series in (21) or (22), we can compute ¢ (3)
with an error Ry satisfying

o0

872 (2N +2)

Ryl < 5 GN 132N = 5) 4
n=N+1

872 1
< — .
27 2N +3)2N + 54N — 1)

Using the 25th partial sum in (22) we have an error bound |Rys| < 9 - 10~'°, and ap-
proximately the value ¢(3) = 1.20205690315959429. For comparison using the Nth
partial sum of ) 2| 1/n®, we can compute ¢ (3) with an error Ry satisfying

RN—— 2: — <‘/‘ ——dX'_ f

n= N+l

from which we get the bound Ry < 8 - 107*if N = 25.
We can write the series representation (22) in another form, because

o0

Z ﬂ — _1 In2,
~ (2n 4 1)4" 2
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see [9, p. 837]. Inserting in (22) gives the alternative form

_ 2n? (2n)
@) =g~ \In2 +ZZ (2n + 3)4"

: (23)

cf. [8]. Notice that the term (2772 /9) In 2 has the form B(7%/6) In 2 as Euler conjectured
could be a term in an exact value for ¢ (3), cf. [5].

Conclusion Starting with the continuous and piecewise differentiable 2 -periodic
versions of x? and x*, x € [—m, ] we have seen how we can evaluate £(2) and ¢ (4)
simply by setting x = m in the Fourier series of the periodic versions of x* and x*,
equations (11) and (13). In the same manner we can evaluate £ (6), {(8), ... by setting
m = 3,4, ... in the periodic version of f(x) = x*", x € [—m, 7]. Starting with the
continuous, piecewise differentiable 2 -periodic version of f(x) = 7%x —x3, x €
[, 7] we have illustrated how, by integraton of f(x)/x, we can find a series with
logarithmic terms for ¢(3), equation (19), and then use power series for logarithmic
functions to get some rapidly convergent series for ¢ (3), equations (21) and (22). The
series representations (23) for ¢(3) is well-known [8, p. 585]. A series representation
analogous to (22) was contained in a 1772 paper by Euler [2, pp. 1084—1085] and later
rediscovered by others [8, p. 571]. Several other known series representations of ¢ (3),
and more generally several other known series representations of {(2n 4+ 1), n € N,
can also be found in [8]. There are also some interesting integral representations for
t@2n+1),n=1,2,3,... which can be found from Fourier series for odd functions
[4] and [6].
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In mathematics we often find that a single problem may be solved by a variety of meth-
ods, with each yielding new insights and perspective. In this note we solve a particular
problem with three different methods, finding that each method suggests the same
generalization (although for varying reasons!). These methods are not new; our goal
in collecting them here is to highlight the connections between different techniques.

The focus of our study has appeared (in slightly different forms) in the problem
sections of the American Mathematical Monthly in 1908 [3] and the College Math
Journal in 1999 [4].

DEFINITION. An integer sequence {x,} is prime-divisible if p | x, for every
prime p.

PROBLEM. Prove that the sequence defined by x; = 0, x, = 2, x3 = 3, and
Xn = Xp—2 + Xp—3 f0rn >4
is prime-divisible.

Combinatorial argument Our first method relies on the combinatorial maxim of
“telling a story” about what the sequence is counting. In the same spirit as Benjamin
and Quinn [1], we use tilings to interpret the sequence. Consider a circular strip con-
sisting of n equal cells. We wish to tile this strip with pieces that cover two cells (called
dominos) and pieces that cover three cells (called triominos). Unlike many other prob-
lems of arrangements on a circle, we consider tilings that are related by a rotation to
be distinct; in other words, a tiling has a fixed orientation.

The question, quite naturally, is how many tilings are possible for a given n. Denote
this count by #,. We show that, in fact, ¢, = x,,. It is clear that t; = 0, t, = 2 (there are
two possible rotational “phases” for the domino), and similarly t; = 3. Now forn > 4,
pick a particular cell of the circular strip as the “top.” For any given tiling, locate the
piece covering the top; remove the piece directly beside it (in the counterclockwise
direction), and paste the strip back together. What results is an oriented tiling of a
smaller strip. One example is shown below.

Math. Mag. 84 (2011) 33-37. doi:10.4169/math.mag.84.1.033. (© Mathematical Association of America
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If the piece removed was a domino, then what results is a tiling of a (n — 2)-length
strip; if the piece removed was a triomino, then what results is a tiling of a (n — 3)-
length strip. In fact, we get a bijection between the set of tilings of length n and the
set of tilings of lengthn — 2 or n — 3. Thus ¢, = ¢, + t,_3; since {¢,} obeys the same
initial conditions and recurrence relation as {x,}, the two are equal for all n. We have
indeed combinatorially represented the sequence in our problem.

Now consider tilings of a prime length p. We prove by contradiction that all of the
p rotations of a given tiling are distinct, showing that the total number of tilings must
be divisible by p. Suppose there is a tiling such that a rotation by & cells (0 < k < p)
leaves the tiling invariant. Since p is prime, k and p are relatively prime; thus there
exist integers x and y such that

kx + py =1.

Interpreting this physically, if we perform x rotations of the tiling by k cells (under
which it is invariant) and y rotations by p cells (again, under which it is invariant),
then the result is a rotation by one cell. This shows the tiling is invariant under rotation
by a single cell, which is impossible as there are no length 1 pieces. This contradiction
completes the proof.

If we examine this argument with an eye for generalization, we see that the absence
of any length 1 piece plays the pivotal role. Therefore we do not expect to be able
to handle recurrence relations where x, depends directly on x,_;. We can, however,
handle a more general recurrence relation by using a technique found in Benjamin
and Quinn [1]: we color the pieces. Suppose the scenario is the same as above, except
there are y different colors of dominos to use and § different colors of triominos. By
the same proof, the number of ways of tiling a p-length strip will again be divisible by
p, and this number is the pth term of the sequence

x1=0,x =2y, x3=38,x, = yx,_2 + 6x,_3 foralln > 4.
Thus for any positive integers y, 8, the sequence above is prime-divisible.

Generating functions Our second method to solve this problem uses the generating
function for the series x,. The generating function for a sequence {ay, a,, ...} is the
formally defined series f(t) = a;t' + at> + - --. Thus, in our case we are interested
in the function

f)=0t"+22 + 35 +2t* + 565+ -+ .

The coefficients x, grow exponentially in n; the ratio test thus shows that for small
enough 7, f(t) is a well-defined, smooth function. Consider the power series
(t> 4+ t3) £(t). Thanks to the recurrence relation, this must match f(¢) in all terms
of order at least 4. We find that

P+ f@) = f@t) =26 =383,
and so

20430 d , s
f(t)—m—(—t)a[log(l—t —t)].

The pth term of the sequence is given from the generating function by % (0)/p!.
If we take p derivatives of the above product with the Leibniz rule, notice that only
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one term survives after setting + = 0. This term corresponds to applying exactly one
derivative to (—t). Thus,

1 dr )
Xp= E-(p-(—l)-ﬁ[log(l—t —z)])

= (—p) - (coefficient of t* in log(1 — t* — £°)).

t=0

Now using the Taylor series for log(1 — ¢), we find that

t2+t32 t2+l33
GRS GRT N
2 3

—log(1 = =) = (> + 1) +

For each n > p, (t* + t3)" contributes no t” term. Thus, the coefficient ¢ of ¢? is a
sum of fractions, all of whose denominators are less than p. For prime p, this implies
that the denominator of ¢ in reduced form is relatively prime with p, so x, = —pc is
indeed divisible by p. This completes the second proof.

As before, we look to generalize this proof technique to other sequences. If the
recurrence relation had x,_; dependence, we would have introduced a linear term
into the #> 4 #* factor. Thus we could no longer have argued away the pth term in
the log series, which was a key step in the proof. For this reason we do not ex-
pect to handle recurrences with x,_; dependence. For the most general remaining
recurrence, x, = yX,_» + 8x,_3, this proof technique still works as long as the nu-
merator of the resulting generating function f(¢) is (a constant times) ¢ times the
derivative of the denominator. Since the denominator is 1 — y#> — 8t and the numer-
ator is x,7 + x,t> + x3t°, prime-divisibility holds for multiples of the initial conditions
x1 = 0,x, = =2y, x3 = —38. Except for a superficial negative sign, this is the same
form as the generalization we found in the previous section!

Field-theoretic solution For our third and final solution method, we use some field
theoretic ideas. This proof requires slightly more background than the others; we refer
the reader to any introductory algebra text, such as Dummit and Foote [2].

Consider the characteristic polynomial

fOy=—r—1

for the sequence {x,}. This has three distinct roots ry, r,, and r3 in the complex plane;
thus there exist complex constants A, B, and C such that

x, = Ar{ + Bry + Cr}

for all n. We show that A = B =C = 1.

It suffices to verify equality for n = 0, n = 1, and n = 2, since those initial con-
ditions determine the sequence. (While the problem did not specify a zeroth term of
{x,}, it is defined uniquely by extending the recurrence relation. Solving x3 = x; + xo,
we see that xo = 3.) Obviously r} 4+ ry + r§ = 3 = xo. Further, since

f@O) = —t—1=(@—r)t—r)t—r),

by equating quadratic coefficients we have r| +r} + rl = 0 = x,. Equating linear
coefficients, rr, + rir3 + ror3 = —1; thus

rl2 + r22 + r32 = +rn+ r3)2 —2(riry +rir3 +1or3) =2 = xs.

This shows that, indeed, x, = r{ +ry + ry for all n.
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Now fix a prime p. By the Multinomial Theorem for the power of a three-term sum,
a generalization of the Binomial Theorem, we have

p' ab_.c
(ri+nrn+r)lf= E , Firrs.
a'b!c!
a,b,c>0
a+b+c=p

The coefficient p!/(a!b! c!) is always an integer and, unless (a, b, ¢) is some permuta-
tion of (p, 0, 0), it is divisible by p. Thus we may write (r; +r, +r3)? =r{ +r; +
ry + p -z, where

(p_l)!ubc
= ) albler 17273

0<a,b,c<p
a+b+c=p

is some integer-linear combination of products of r{, r,, and r;. Substituting x, =
i +ry+ry,

P __
X, =x,+p-z
_xpzp.z'

Now z is an algebraic integer; since p - z is an integer, it follows that z is in fact an
integer. Thus p | x,, completing the proof.

We again attempt to generalize this proof. It was crucial that f have three distinct
roots ry, r, r3, and that the sum r; + r, + r3 vanish. This restricts us to recurrences of
the form x, = yx,_, 4+ 8x,_3. Now the proof will proceed for any multiple of x, =
ri +ry + ry; this gives the initial conditions x; = 0, x, = 2y, x3 = 35. We have yet
again found the same generalization.

Conclusions Our three methods offer different interpretations of the problem. De-
pending on one’s point of view, the initial conditions that made our sequence prime-
divisible arose from

* counting base case tilings of a circular strip;

* matching the numerator of the generating function with the derivative of the denom-
inator; or

* using sums of powers of roots of the characteristic polynomial.

Also notably, the three methods used the condition of primality in slightly different
ways.

It is especially compelling that each of these interpretations led to the same natural
generalization of the problem, giving initial conditions for x, = yx,_, + éx,_3 to be
prime-divisible. The fact that this generalization arose thrice suggests that it is actually
the “correct” one. In fact, with suitable restrictions on the characteristic polynomial, it
does cover all prime-divisible third-order recurrences.

If those restrictions are relaxed, though, there are more families of prime-divisible
sequences. We prove this, giving a catalogue of such sequences, in an upcoming com-
panion paper. In the mean time, we invite the reader to use any of these three ap-
proaches (or another!) to discover these additional recurrence families for yourself.
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VOL. 84, NO. 1, FEBRUARY 2011 37
REFERENCES

1. A. Benjamin and J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Associa-
tion of America, Washington, DC, 2003.
2. D. Dummit and R. Foote, Abstract Algebra, 3rd ed., John Wiley, Hoboken, NJ, 2004.
=+ 3. E. Escott, Solution to Problem 151, Amer. Math. Monthly 15 (1908) 187. doi: 10.2307/2969581
4. R. Tudoran, “A Well-Known Sequence,” Solution to Problem 653, College Math. J. 31 (2000) 223-224. doi:
10.2307/2687495

Summary In this note we examine a well-studied problem concerning the terms of a certain linear recurrence
modulo prime numbers. We present three solutions to this problem and examine the similarities and differences
between them. In particular, despite using primality in different ways, all three proofs yield the same generaliza-
tion of the original problem.
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The celebrated isoperimetric theorem says that the circle provides the least-perimeter
way to enclose a given area. In this note we discuss a generalization which arose at a
departmental research seminar [1] and which moves the isoperimetric problem from
geometry to number theory and combinatorics. Instead of Euclidean space, let’s take
the set Ny of nonnegative integers:

No=1{0,1,2,3,...}.
For any subset S of Ny, we define volume and perimeter as follows:

vol(S) := sum of elements of S

per(S) := sum of elements of § whose predecessor and successor
are not both in §.
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For example, for S = {0, 1,4, 5, 6,7}, vol(S) =23 andper(S) =0+ 14+4+4+7 = 12.
This definition is a natural generalization of the original problem; the perimeter comes
from elements that are on the “boundary” of our set, as these elements belong to S but
have a neighbor that does not.

We can now state the problem we want to consider:

ISOPERIMETRIC SET PROBLEM. Among all sets S C Ny whose volume is n, find
the set S with smallest perimeter.

We write P(n) for the smallest perimeter consistent with volume n. For example,
among all sets of nonnegative integers that sum to n = 9, the smallest possible perime-
ter turns out to be 6, with § = {2, 3, 4}. For n = 19, the smallest perimeter is 10, with
S ={0,1,3,4,5,6}. For n < 135, we find P(n) by an exhaustive computer search;
FIGURE 1 shows a plot.

P(n)

T
L]
L]
L]
L]
L]
L]
L]
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Figure 1 Plot of minimum perimeter P(n) versus prescribed volume n.

How large is a typical P (n) relative to n? Does P (n) grow linearly with n, or is it
significantly slower? Unfortunately, our plot above has only 135 data points, and it is
very easy to be misled as to the limiting behavior from such a small data set. (Similar
limitations of computations arise when counting prime numbers. The famous Prime
Number Theorem states that the fraction of numbers from 1 to n which are prime is
about 1/logn. This tends to zero, albeit very slowly. Of the numbers from 1 to 10,
40% are prime (2, 3, 5, and 7), and of the numbers from 1 to 20, still 40% are prime,
without any indication that the percentage is approaching 0.)

As our problem generalizes the classical isoperimetric problem, perhaps the solu-
tion to that problem can suggest what the true behavior of P(n) should be. Although
our problem lies on the number line, each point is weighted by its value, in some sense
adding a dimension. So perhaps the two-dimensional classical isoperimetric problem
would be a good guide. We know that the optimal solution in that case is a circle. As
the area of a circle of radius r is A = 77> and the perimeter is P = 27r, simple al-
gebra yields that the least perimeter for a given area is P = 2/ A'/2. Given this, it
is not unreasonable to conjecture for large n that P(n) should approximately equal a
constant times /7.

It turns out that the classical problem does provide the right intuition, as the follow-
ing proposition shows. It says that P(n) is asymptotic to V2 n'/?; that is, the ratio of
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P(n) to ~/2n'/? approaches 1 as n tends to infinity. The two bounds in the proposition
are graphed in FIGURE 2.
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Figure 2 Top: Plot of the upper bound +/2 n'/? + (2n'/* + 8) log, log, n+ 58 and the
lower bound +/2 n'/2 —1/2. As n approaches infinity, our two bounds asymptotically
approach +/2 n'/2. Bottom: Plot of the ratio of the upper and lower bound. The two
bounds have the same growth rate in the limit, but the convergence is very slow.

As we will see, the proof of the lower bound is trivial. The proof of the upper
bound is a tricky induction argument. The hardest part is finding the right induction
hypothesis, a process which, for us, involved much trial and error.

PROPOSITION. P(n) ~ +/2n'/2. Indeed, forn > 2,
V2n'? =172 < P(n) < V20" + 2n"* 4 8) log, log, n + 58.

Proof. The perimeter of S is at least as large as the largest element of S, which we
denote by m. For the lower bound, if vol(S) = n then m must satisfy

_ m(m—+ 1)

3 ey

n<04+14+---4+m

By the quadratic formula, equality holds if m equals f(n), where

N2 1
f(}’l) = (2]’1 + Z) — 5,
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and the inequality in (1) is equivalent to

1/ 1
m=> f(n) = (2n + —) ——>2n'?—1)2.
4 2

For the upper bound, we use the following greedy algorithm. Given n, we will
construct a set S with volume n and reasonably small perimeter. Choose the largest
term m; in S to be as small as possible. For the remaining volume, continue taking
consecutive numbers as long as possible, through m, < m;. Choose the next term
ms3 < m, as small as possible. Continue. For example, for n = 19, this algorithm yields
S = {6,5, 4, 3, 1, 0}, which turns out to be optimal. For n = 11 it yields {5, 4, 2} with
perimeter 11, which is worse than the optimal {5, 3, 2, 1, 0} with perimeter 8.

First note that m; < f(n) + 1, because for any integer m > f(n), (1) holds. Simi-
larly for any odd k, m; < f(my_; — 1) 4+ 1 because by choice of m;_,, the remaining
volume is less than m;_; — 1.

For even k, we stopped at m; because the next (smaller) integer m; — 1 exceeded
the remaining volume. The sequence of chosen integers stopping at m; began at m;_j,
which by its choice exceeds the sum of all successive unused integers, including
my — 1; or excluding m; — 1, the sum of all the integers starting with p = m; — 2:

p(p+1)
2

Hence, m; — 2 < f(my_1). In summary, for all k£ > 2,
my < f(mg—) +2. (2)

We now consider a simpler new function g(n) which is closely related to f(n) and
avoids the complications of the +2. Letting

< Mp_1.

g(m) = V2m'? 42,

we find

N 3
f(m)+2=(2m—|—z> +3

1 3
< 2m2r 4
=< m —I—2+2

=2m'"? +2 = g(m).

We now consider compositional powers gt(n), where for example g3(n) =
g(g(g(n))). By (2), for k > 2, the compositional power g¥(n) satisfies

m < g¢(n), 3)

without the pesky +2 of (2). Now all we need is an upper bound on g* (n). We’ll prove
by induction that for k > 1

gy < 2171212 4, &)
The base case k = 1 is immediate. The induction step takes just a little algebra:
¢ n) < 21/2(21—1/2kn1/2k + 8)1/2 +2
< 21/2(21/271/2"“”1/2"“ + 81/2) +4

_ 2171/2k+ln1/2k+l Yy
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Now we can translate our upper bound for g () into an upper bound for P (n). Indeed,
by (3) and (4) it follows that

Pn) <my+my+msz+---
<" 4+2) + @ 1+ 8) + Q7' B +8) + - -
< 22p172 1 2n'* 4 8)(log, log, n — 1) + 68,

because there are at most log, log, n terms with n'/ 2 > 2 and the rest by (4) are less
than 12, with sum at most 66. Since 2n'/* 4+ 8 > 10,

Pn) < V2n'? 4 @n'* +8) log, log, n + 58,

as desired. [ |

Volume and perimeter within other sets It is interesting to let another ordered set
X, other than the nonnegative integers, play the role of Ny. For example, for the set of
harmonic numbers X = {1/1,1/2,1/3, ...} one may attain arbitrary positive volume
(via infinitely many terms). We know almost nothing about the minimum perimeter.
Roger Bolton proposed including negative numbers, say all the integers in order:

X=Z:=1{.,—1,01,2,...). 5)

In this case the perimeter should be defined as a sum of the absolute values. Now
certain types of holes in the previous solution can be filled to reduce the perimeter.
First, if the smallest term in the previous solution is k > 1, then adding the terms
—(k—1),...,0,...,k— 1 will leave the volume unaffected and reduce the perime-
ter by 1. For instance, the minimizer for volume 9 can be improved from {2, 3, 4}
with perimeter 6 to {—1, 0, 1, 2, 3, 4} with perimeter 5. Second, if a nonnegative se-
quence includes a passage like ...,a — 1,a + 1, ..., then including {—a, a} will
leave the volume untouched while reducing the perimeter by a. For instance, the
minimizer for volume 19 can be improved from {0, 1, 3, 4, 5, 6} with perimeter 10
to {—2,0,1,2,3,4,5, 6} with perimeter 8.

Often in number theory a related problem allowing differences as well as sums is
significantly easier to solve than the original allowing just sums. (One famous example
is Waring’s Problem and the Easier Waring’s Problem. Waring’s Problem states that
for each k there is an s(k) such that all positive integers are a sum of at most s(k) kth
powers. The Easier Waring’s Problem allows differences as well as sums. For example,
7 is not the sum of three squares, but 7 = 3% — 12 — 12. It can be proved in half a page
[2, p. 102].)

Similarly, we can study the Easier Isoperimetric Sequence Problem, where we al-
low pluses and minuses when summing the elements of the subset S to obtain the
prescribed volume #. In this case it is significantly easier to analyze the fluctuations
about ~/2n'2. Let EP(n) denote the minimum perimeter (with all contributions to
perimeter still positive) for our related problem, which is obviously at most P(n). The
lower bound is still +/2n'/? — 1/2, but now we can remove the log, log, n factor in
the upper bound, as it is easy to show that EP(n) < +/2n'/? 4 4. Indeed, choose the
smallest k such that 0 + 1 +2+--- +k = k(k+1)/2 > n; thenk < v/2n'2+ 1. To
obtain a sum of exactly n, take a minus sign on one term, changing the sum by an even
integer to n or n 4 1, and in the latter case drop the 1, adding 2 to the perimeter. In
the exceptional case when k(k + 1)/2 = n + 3, drop the 1 and the 2, adding 3 to the
perimeter. In any case, EP(n) < +/2n'/% + 4, and thus the fluctuations about +/2 n'/2
cannot be larger than 5.
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We end with some questions for further research. What does the minimum perime-
ter function P (n) say about the number theoretical properties of a set X? What are
some interesting examples? What is the true scale of fluctuations of P(n) about
V2n'/? when X is the nonnegative integers? Are the fluctuations frequently as large
as log, log, n? In other words, what can we say about P (n) — /2 n'/>? Is there some
h(n) so that (P(n) — ~/2n'/)/ h(n) has a nice limiting distribution as n — 00?
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Summary The celebrated isoperimetric theorem says that the circle provides the least-perimeter way to enclose
a given area. In this note we discuss a generalization which moves the isoperimetric problem from the world of
geometry to number theory and combinatorics. We show that the classical isoperimetric relationship between
perimeter P and area A, namely P = cA'/2, holds asymptotically in the set of nonnegative integers.
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Let’s play a computer game. You will see on your computer screen thirteen envelopes
in one of two colors: red or blue. The envelopes will appear one by one in random
order. Each envelope will be visible for 10 seconds and then will disappear forever.
You know that there will be five envelopes of one color and eight of the other, and
each of the five envelopes contains $100, while the eight envelopes of the other color
are empty. You can select only one envelope, by clicking on it while it appears on the
screen. Once you click on an envelope, it opens to reveal either $100 or the taunt “You
lose!” and the game is over. Of course, you don’t know which color is the winning,
or “rare,” color until you make a choice. How should you proceed to maximize your
chances of getting a prize? Does your probability of winning decrease if the number
of prizes is smaller?

We describe the optimal strategy for the general case with m envelopes of one color
and n of the other, and give the probability of winning. In fact, you will see that,
playing with five winning envelopes out of thirteen, the probability of success is 0.902
if you play optimally. However, with only three lucky envelopes, the optimal strategy
allows you to win with a probability of 0.965.
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The situation we have just described is an example of an optimal stopping time
problem and is a variation of the famous secretary problem. In the classic secretary
problem, we have n candidates for a secretary position. These candidates are linearly
ordered, or ranked, from the best (ranked 1) to the worst (ranked n). They are coming
for interviews in some random order and after ¢ interviews, ¢ < n, we can determine
the relative ranking of only those ¢ candidates. We would like to stop the interview
process, but can only offer a job to the most recently interviewed candidate. We want
to maximize the probability of hiring the best secretary.

The classic secretary problem appeared in the late 1950s and its solution was pre-
sented in a paper by Lindley [6] in 1961. You can read about the rich history of the
problem and its many generalizations in an article by Thomas Ferguson [2].

The optimal strategy tells us to interview and reject t — 1 candidates, where 7 is the
smallest number satisfying the inequality

1 1 1
t t+1 n—1

<1

and then stop on the first one that is better than all candidates seen so far. This means
that we have to wait throughout the initial n/e (roughly) interviews before making a
stopping decision. The probability of success is approximately 1/e.

For example, for six candidates (n = 6) and the permutation 7 = (4, 6,2, 1,3,5),
the full history of interviews is given in FIGURE 1. At each time the candidates with
high values are placed below the candidates with low values. In this sample per-
mutation 7 the fourth best candidate appears first, followed by the sixth best (the
worst) candidate, and so on. The optimal strategy tells us to stop at time # = 3 since
% + 4'—‘ + % = % and % + % + }1 + % > 1. Unfortunately, the third candidate, who is
best so far, is not the best one, but the second best.

t=1 t=2 t=3 t=4 t=>5 t=6
Figure 1 History of interviews for the permutation = = (4, 6,2, 1, 3,5), meaning that

the fourth best candidate appears first, and so on. Each large bullet represents the latest
candidate at time t.

Game details and states In our computer game, we have two types of envelopes,
the empty ones forming the set M and the winning envelopes forming the set N. We
assume that |M| = m > |N| = n and call the game G (m, n). Since the elements of
M, as well as N, are indistinguishable, what we observe is a binary sequence whose
elements are the names of the colors, say a and b.

Therefore, for any pair of positive integers m and n, with m > n, the sample space
U, 1s the set of all sequences of length m + n over the binary alphabet {a, b} having
either n as and m bs or n bs and m as. Every sequence in U, , is equally probable.

During the game, for a given sequence u (unknown to us), longer and longer initial
segments of u are revealed. We develop a vocabulary of states to identify features of
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the initial segment of u at the current time k. Before we define these formally, we give
an example: If u = (aaabbabbaabaa), then at time k = 5 we see the initial segment
aaabb of u; we write u € S(3, 2) to mean that the current character b occurs twice
and the other character a occurs three times. At time k = 6, we see the initial segment
aaabba of u and write u € S(2, 4). Now the two bs cause us to write 2 in the first slot,
because b is no longer the current character.

Fors > 0,¢t > 1, min(s, t) < n, and max(s, t) < m, define the state S(s, t) as fol-
lows: For any sequence u from U, ,,, u € S(s, t) if among s + ¢ initial characters of u
there are exactly ¢ copies of the character occurring in the position s + ¢ and s copies
of the opposite character. Let G, , be the set of all states S(s, ) with s > 0,7 > 1,
min(s, t) < n, and max(s, t) < m.

As an illustration, consider the game G (8, 5) and assume that a randomly selected
sequence is u = (aaabbabbaabaa). In TABLE 1 we mark consecutive states for this
sequence as the game progresses.

TABLE 1: Consecutive states for the sequence
(aaabbabbaabaa)

t|| 1|23 4|5 |6|7]|8
s
0 1123
1
2 6
3 415
4 71 8
5 9
6 10 | 11
7 12
8 13

Notice that many sequences could lead to the same state; for example, all sequences
whose initial segments of length five are aaabb, babba, or baaab belong to the state
S@3,2).

Suppose that after time s + ¢ we see an {a, b}-sequence u belonging to the state
S(s, t) and we stop at that time. If u(s + ¢) is the (s 4 ¢) element of that sequence (a
or b), then the conditional probability of winning given that we are currently in the
state S(s, t) turns out to be

n m
()
() + )
To see why, notice that the expression in the numerator counts all the winning se-
quences in the state S(s, ¢), while the denominator counts all the sequences in the state
S(s, t), both winning and losing. Recall again that when evaluating the conditional
probability evaluated in (1), we do not know the whole sequence u, but only its initial

segment of length s + . We do not know which character a or b is the winning char-
acter. This will be determined by the remaining elements of u. Let’s notice that this

Plu(s+t) e N|ueS(@s, )] = (1)
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probability does not depend on the permutation of the elements of the initial segment,
but only on the number of occurrences of the current character.

Intuitively, a stopping time should tell us when to stop the game, based only on the
portion of the sequence through the kth entry. More formally, a stopping time for the
set of sequences U, , is a function t on U,, , whose range is {1, 2, 3, ..., m + n}, such
that if for some sequence u, 7(u) = k, then t(v) = k for any other sequence v whose
initial segments until time k agree with the initial segments of u.

In our case, however, because of the observation about probabilities we made ear-
lier, the value 7(u) = k depends only on the number ¢ of occurrences of the character
u(k) through time k. In other words, the stopping time depends only on the current
state S(k — ¢, t) and not the whole history of states determined by shorter initial seg-
ments of u. Therefore, a stopping time 7 can be defined by specifying a subset T of
the set of states G,, ,. We should stop the first time we enter a state in 7. If, for a given
u, this state is S(s, ), thent(a) = k =5 + 1.

Optimal stopping time We are ready to formulate the theorem describing an optimal
stopping time for the game G (m, n). This optimal stopping time tells us to stop at the
first moment when we see at least n envelopes in each color. It is obvious that seeing
more than n envelopes of a single color guarantees that we will win by picking the
other color. It is also clear that if we have seen n envelopes of one color and we are
looking at the nth envelope of the other color, then we must stop. We could still win
with the probability 1/2, but if we wait, we will certainly lose.

THEOREM 1. An optimal stopping time 1 is the stopping time determined by the
subset Ty = {S(s,n) | s > n}. For this stopping time 1y, the probability of winning
equals

nn+1Dn+2)---2n—1)

Pt e M= o D+ D+ )

2

Proof. We establish four facts:
1, if ;
@ Pli(r) e N|ieSsml=1{, .. "
2
(b) It is never beneficial to stop in a state S(s, t) with¢# > s and s < n.

ifs =n.

(c) The probability of winning is as in (2).
(d) If t < s and 7 is a stopping time that tells us to stop in a state S(s, t) with ¢ < n,
then Plu(r) e N |u € S(s,n)] < Plu(ry) € N |u € S(s,n)].

To justify (a), let us notice that putting s = t = n in (1) gives P[u(2n) e N |u €
S(n,n)] = %; if s > n, then the current character is certainly the winning character.
To justify (b), suppose that we stop at the state S(s, #) with t > s and s < n. Then
Plu(s+t)e Nlue S(s, )] = (”1)(];1) = ! < 1
’ - (n\(m n\ (my ~ —s)! (n—1)! ’
OO +OC) 1+ o=y 2

since
m—s)!in—0)!' (m—t+1)m—1t+2)---(m—ys)
m—0'n—s) (m—t+Dm—t+2)---(n—s)
However, if we use 7y and do not stop at S(s, ) we will reach a state in 7y which gives
us, after stopping there, the probability of winning of at least %

To justify (c), we notice that the only sequences for which the stopping time t, leads
to a loss are those where all n elements from the winning set N arrive before the nth

> 1.
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element of the larger set M. Equivalently, all elements of N arrive in the first 2n — 1
positions. Therefore,

(2n_l) —1_ nn+Dm+2)---Q2n—1)
") B m+Dm+2)m+3)---(m+n)

n

Plu(ryp) e N]=1—

To justify (d), we will prove that the probabilities of failure when using 7j and
satisfy the reverse inequality. We have

()

P[ﬁ(f) eM | ue S(S,l)] = NN
) +0)
On the other hand, if we do not stop at S(s, #) but wait and stop later according to the

strategy 7, then
Plu(rp) e M |u € S(s,1)]
n\ (m 2n—s—t—1 n\ (m 2n—s—t—1
__ o0 L) 00 t5T)
= (n\(m n\ (m m+n—s—t n\ (m n\ (m m+n—s—t\ *
OO +OE) 55 OGO +0O6) (5)
The first term gives the probability that among s 4 ¢ elements leading to the state
S(s, t), we had t elements from M, s from N, and the remaining n — s elements of N
will all come before the time 2n — s — t. Similarly, the second term gives the proba-
bility that ¢ elements leading to the state S(s, t) were from N, s were from M, and the

remaining n — ¢ elements of N will all come before the time 2n — s — . Assume first
that t <s < n. Then

(m+n—s—t> <2n—s—t> m+n—s—1) 2n —s —1)!
> or

m—ln—s) _ (=)=

n—s n—s
Equivalently,
m+n—s—1t)! Cn—s—t—Dn—t+n-—ys)
m—nln—s)! (11— )l (n—1)!
or
m+n—s—1t)! n—s—1t—1)! @Cn—s—t—1)!

m—1t)!(n—ys)! ~ (n—t—l)!(n—s)!+(n—s—l)!(n—t)!’

m!n!
tls!?

which implies, after dividing both sides by (m + n — s — ¢)! and multiplying by %=
the inequality

—s—t—1 n—s—t—1
)00t 00)
Dividing both sides by (*) (") + (%) (") gives
Plu(r) e M |ue S(s,1)] > Plu(rg) e M |u € S(s,t)], asdesired.
Ift < n buts = n, then easy calculations show that

Plu(r) e M |u e S(s,t)] = Plu(rg) e M |u e S(s, 1)]. ]

To illustrate the theorem let us evaluate relevant probabilities for the game G (8, 5).
According to the last theorem, using the stopping time 7y, we win with the proba-
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bility Plu(ty) € N] =1 — % = % =~ (0.902. For example, for the sequence
u = (aaabbabbaabaa) we have 1y(u) = 11 and we win on this sequence. However,
for the sequence u = (aaabbabbbaaaa) we have 7o(u) = 10 and we lose on this se-
quence. For a random u in which only ten initial characters are known, for example
u = (aaabbabbba___), ty(u) = 10 and Plu(ry) € N |u e S5, 9)] = % Notice that
when we see only seven characters of u, namely u = (aaabbab______ ), and we stop
at the state S(4, 3), not according to the optimal strategy 7, then P[u(7) € N |u €
S4,3)]=1- % = % =~ (.714. Although this probability is higher than 0.5, it is still
possible from the state S(4, 3) to reach other states, not S(5, 5), where 7 assures us of
winning with probability 1.

The optimal stopping time 7, described in the theorem is not unique. For example,
the stopping time t; associated with the set of states 77 = {S(s, t) | s > n} is optimal
as well. In fact, any stopping time 7 associated with a set of states 7" such that T, C
T < T is optimal. Not only does such t have the same probability of winning as o,
but T and 7, are either both winning or both losing identically on every sequence in
the sample space. They all fail on sequences in which all # winning characters appear
before the nth losing character. For the game G (8, 5), the set Tj consists of the four
last states of column 5 in TABLE 1, but the set 7} consists of twenty-three states in the
last four rows of TABLE 1.

For m 4+ n = 13, the probability of winning while using 7y changes with n. TABLE 2
gives these probabilities for the full range of n, 1 < n < 6. The highest probability of
winning occurs for n = 3.

TABLE 2: Probabilities of winning for all
games with m+n=13

Game Probability of winning
G(7,6) % ~0.731
G(8,5) 129 ~0.902
G(9,4) 136 ~0.951
G(10,3) 18 ~0.965
G(11,2) 2 ~0.962
G(12,1) £~0.923

Exercises for the reader
1. Show that the probabilities of winning while using 7, for the games G(n + 1, n)
approach 3/4 as n — oo.

2. Show that the probabilities of winning while using 7, for the games G (m, 1) ap-
proach 1 as m — oo.

3. Prove that for a fixed value of m 4+ n the sequence a, = P[u(ty) € N], where
|N| = n, is unimodal for 1 < n < m, more precisely

m—2

a, <a,y forl <n=<
and the sequence becomes decreasing for larger values of .

Final comments More comprehensive studies of the secretary problem appear in a
book by Berezovsky and Gnedin [1] or in a paper by Ferguson [2].
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Other variants of the secretary problem were studied later for partial orders (com-
plete binary tree [7], general partial order [3, 8]), for graphs and digraphs [5], and
threshold stopping times [4].

The game described in this paper could be generalized to allow p different types of
elements, with p > 2. If the objective is to “choose rarity” by stopping on an element
in the smallest set, an optimal strategy seems to be analogous to the one described in
the paper, but finding probabilities of winning is more challenging.
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Summary You enter an online game, hoping to win a prize. You know that thirteen envelopes of two colors
will appear one by one on your screen, and you know that there will be five of one color and eight of the other.
Each of the five envelopes, those with the “rare” color, contains $100, while the others are empty. However, you
do not know which color is which, and you can only select one envelope; once you click, the game is over. How
should you play to maximize the probability of winning? We provide an optimal strategy for this game and a
generalization.
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The Math Factor podcast posed the problem of finding the smallest number of inch
marks on a 12 inch ruler so that one could still measure any integer length from 1 to
12 as a distance between marks. One needs only four additional marks besides 0 and
12; for example 1, 4, 7, 10 works, as you can check. This entertaining problem led
to others during the next few minutes (you can listen at http://mathfactor.uark.
edu/2005/10) and inspired us to look for generalizations. After several false starts
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and numerous literature searches we uncovered the theory of Golomb and minimal
spanning rulers, a generalization to the natural numbers and relations of an unsolved
conjecture of Erdés and Turan.

We analyze our first problem, which led us to Golomb rulers. A property of the ruler
of length 6 with marks at 0, 1, 4, 6 is that each of the lengths 1, 2, 3, 4, 5, and 6 can
be measured and it can be done in only one way. Can one choose marks on a ruler of
length 12 so that each length from 1 to 12 can be measured in only one way?

Golomb rulers are sets of integers (marks) with the property that if a distance can
be measured using these marks then it can be done in a unique way.

DEFINITION 1. A set G of integers
a) <ay <---<da,_ <a,
is called a Golomb ruler if for every two distinct pairs of these integers, say a; < a;
and a,, < a,, we have a; — a; # a, — a,,.

The size of G is defined to be p (the number of marks in G) and is denoted #G. The
length of G is defined to be a, — a; (the largest distance that can be measured using
the marks from G).

It is clear that we can translate these sets: if G = {a;, a2, ..., a,} is a Golomb ruler
then sois {a; +b,a, + b, ..., a, + b}. This makes the choice of a; immaterial, so it
will usually be taken to be 0. It is also clear that if G = {a;, a5, ...,a »} is a Golomb

ruler, then so is the reflection of G around the midpoint (a; + a,)/2. For example,
{0, 1,4, 6} is a Golomb ruler, as is {0, 2, 5, 6} obtained by reflecting the first ruler
around the point 3. To simplify the statements of some of the theorems, a set {a;}
consisting of a single point is considered to be a Golomb ruler.

Golomb rulers have numerous applications. The best known is an application to
radio astronomy. Radio telescopes (antennas) are placed in a linear array. For each
pair of these antennas, the received signals are subtracted from each other and an
inference can be then made as to the location of the source. These inferences can be
made much more accurate if all the distances between the antennas are multiples of the
same common length, and many such pairs with distinct distances between them are
available and can be utilized. The problem maximizing the number of distinct distances
between the pairs, while minimizing the number of the antennas and the length of the
array, was first considered by Solomon W. Golomb [1, 2, 8, 10].

Other applications include assignments of channels in radio communications, X-ray
crystallography, and self-orthogonal codes. Rankin [12] gives more information about
these applications. There is also a wealth of information in various writings by Martin
Gardner [5, 6, 7].

The Golomb ruler {0, 1, 4, 6} has the additional property that every integral distance
between 1 and 6 can be measured. We call such a ruler perfect.

DEFINITION 2. A Golomb ruler G of length N is called perfect if every integer d,
1 <d < N, canbe expressed as d = a — @/, for some a,a’ € G.

Since G is a Golomb ruler, the representation of each d is unique. Unfortunately,
there are very few perfect Golomb rulers.

THEOREM 1. (GOLOMB) Together with their translations and reflections around
the midpoint, the only perfect Golomb rulers are {0}, {0, 1}, {0, 1, 3}, and {0, 1, 4, 6}.

This theorem was proved by Golomb, but apparently he never published it. There
are several places where the proof appears [4, 12], but they are not very easily acces-
sible, so we present here a slight modification of the original argument.
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Proof. If G is a perfect Golomb ruler of size p and length N, then, since there are

N distances to be measured and the number of distinct pairs of these points is (’2’),

we must have N = % p(p — 1), so N is a triangular number. The triangular numbers
below 10 are 0, 1, 3, 6 corresponding to the rulers listed in the theorem.

Assume then that G is a perfect Golomb ruler of length N > 9 and seek a con-
tradiction. Without loss of generality we may assume that a,, the smallest number in
g, is equal to 0 and so the largest number is @, = N. By hypothesis, every number
1 <d < N is uniquely realizable as a difference of two marks in G. Since N is realiz-
able, 0 and N must belong to G. Since N — 1 is realizable, either 1 or N — 1 belongs
to G. By reflecting G around N /2, we may assume that 1 € G. Next, since N > 3,
N — 2 must be realized. Since N — 2 > 1, G must contain another point.

The possible pairs realizing N — 2 are {2, N}, {1, N — 1}, {0, N — 2}. The first
two produce duplications: ] —0=2—1and 1 — 0= N — (N — 1). The third is the
only possibility, so G contains N — 2 as well as 0, 1, N. The realized distances are
1,2,N—-3,N—-2,N—1,and N.

Since N — 4 ¢ {1, 2} we need one of the pairs {0, N — 4}, {I, N — 3}, {2, N — 2},
{3, N — 1}, {4, N} to realize N — 4. All but the last case produce distances already
realized: (N —2) — (N —-4)=N—-(N-2),1-0=(N-2)—(N-3),2-0=
N—(N-2),1-0=N-—-(N-1).

The last case passes inspection, so G contains 0, 1,4, N — 2, and N. The distances
that can be realized by Gare 1,2,3,4, N —6,N —4, N —3, N —2, N — 1,and N.

Finally, consider the distance N — 5. Since N — 5 ¢ {1,2,3,4} and N > 9 this
distance has not been realized. The possible pairs for realizing the distance N — 5 are
{O,N =5}, {I,N —4}, {2, N -3}, {3, N — 2}, {4, N — 1}, {5, N}. The reader may
easily check that each of these cases leads to a duplication. This contradiction shows
that N < 9 and the constructions above give the perfect rulers asserted by the theorem.

|

Since perfect Golomb rulers essentially do not exist, we seek “almost perfect”
rulers. Roughly speaking, given a length N, we try to place as many points as pos-
sible in the interval [0, N] so that the resulting set forms a Golomb ruler. Alternatively,
given the size p of the ruler (the number of marks), we try to construct a Golomb ruler
of shortest possible length N with p points. Such rulers are called optimal.

DEFINITION 3. For every positive integer p, let G(p) be the shortest possible
length of a Golomb ruler with p marks.

A Golomb ruler with p marks is called optimal if its length is G(p). Dimitro-
manolakis [4] discusses optimal Golomb rulers in detail. For example, G(6) =
17, and there are 4 optimal rulers of size 6 and length 17: {0, 1,4, 10, 12, 17},
{0, 1,4,10, 15,17}, {0, 1, 8, 11, 13, 17}, and {0, 1, 8, 12, 14, 17}.

Computer searches give the largest known value of G(p). The current record is
G (26) = 492 and the corresponding optimal Golomb ruler has marks

013383104110124 163 185200 203 249 251 258
314 318 343 356 386 430 440 456 464 475 487 492.

The search took several years and this ruler is not even known to be unique [13, 14].
Wikipedia is a good place to look for the latest record values of G(p).

Given a Golomb ruler with p marks, there are (‘2’) ~ % p2 distinct distances one

can measure with this ruler. Thus, one expects G (p) to be roughly at least % ptltisa
conjecture, with strong empirical evidence, that G(p) < p?; but it is only a conjecture.
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Golomb rulers also have a close connection with additive number theory. It is com-
pletely outside the scope of this paper to discuss this connection in any depth, and we
only state some facts and invite the reader to investigate further.

DEFINITION 4. A subset B of integers contained in [1, N] is called a B, basis, if
for any two distinct pairs of integers from B, say a, @’ and b, b’ we have

a+a #b+b.

There is an old conjecture of Erdds and Turan which states that a B, basis with
|v/N | elements can be constructed in [1, N] for any N. This is very closely related
to the conjecture that G(p) < p*. Halberstam and Roth [9] give a comprehensive
discussion of additive number theory and the connection with Golomb rulers.

Perfect rulers on N In this section we study infinite rulers. These are sets G of
nonnegative integers, such that any positive integer d is realized as a distance between
some two elements of G. If we require, in addition, the representation to be unique, we
may speak of infinite perfect Golomb rulers.

DEFINITION 5. A subset G of the set N of natural numbers is called an infinite
perfect Golomb ruler if

(1) for every positive integer d, there are elements a, a’ € G so thatd = a — a’, and
(2) for every such d this representation is unique.

It is not entirely clear that such things exist, but in fact they do and also they can be
made arbitrarily thin (sparse) depending on the choice of a function ¢.

THEOREM 2. Let ¢ : Rt — R* be strictly increasing with ¢(x) — 00 as x —
0o. There is an infinite perfect Golomb ruler G € N such that for x > xo = x0(G, @)

#klkeg, k<x}=<oekx). €]

Proof. We preview the steps: First we choose a rapidly increasing sequence Y4,
k=1,2,..., and then construct G by successively adding the points {yx, yx + k}. If
a duplication would occur as a result of this addition, then we do not add the pair.
Various things have to be proved, for example, that skipping a pair does not result in
some integer d not being realized as the difference of two elements of G, etc. The
details follow.

Choose a strictly increasing function ¥ (x) such that

1
x < 5o (x) 2
and define a sequence {y;} by
n=0
Vel > Uk+ 1)+ 2y +k)+ 1, fork > 1. 3)

Define A; = {y1, y1 + 1} which of course equals {0, 1}, set

A U {Yists Vi + (K + 1)}
Ay = if this set A; U {3411, 41 + (k + 1)} has no duplicate distances
A, otherwise,
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and let

G=JA.
k=1

First we show that the set G satisfies the density condition (1) in the statement of
the Theorem. Let x > 1 be given and let k be the largest integer such that y;, < x.
Then

#k|keG, k<x} <2k

because the elements of G come in pairs: y, and y, + p. Now

r 1 X 1 - 1
0 < Eﬁﬂ(l/f( 0)) < EQO(J/kO) = EQO(X)'

The first inequality follows from (2) and the second and third follow from (3) and the
fact that ¢ is monotonically increasing. Thus the density claim (1) of the Theorem is
true.

By construction, there is no duplication of distances in G. After all, there is no
duplication of distances in any of the sets A;.

It remains to show that every distance d is realized as a difference of two elements
of G. It suffices to analyze the pairs not included by our process: When a duplication
occurs by inclusion of {y,, v, + p}, then we claim that

p=a—ad wherea,a’ € A, “4)

that is, p is already realized as a distance in the set A,,_l. This would occur, for
example, in the following situation: Let a and &’ be two points in a set A,, for
some ¢ such that a —a’ > g. Then, further along in the process, adding the pair
{Va—a's Va—ar + (@ — a’)} would surely create a duplication. The claim is that this is
essentially the only way it could happen. Now, if this claim is true, then either every
distance d occurs in G through the addition of the pair {y,, v; + d} or d occurs already
as a distance in the set A,_;.

We now prove the assertion (4). Suppose that the addition of the pair {y,,, ¥, + p} to
the set A,_; results in duplications. Because there are no duplications in the set .A,_,
these duplications must involve the points from the pair under discussion. It follows,
because of (3), that both points of the pair are larger than any of the points in A,_;,
and so the possibilities are:

—

O wtp —yv,=a-d
(i) Wp+p —a=y,—d
(i) (yp+p)—a=da—-a"
(iv) Yp—a=d —a
where the numbers a, a’, a” are elements of the set A,_;. In cases (i) and (ii) then p
is a difference of some elements in A,_;, hence (4) holds. The possibilities (iii) and
(iv) cannot occur because the largest element of 4,_, is at most y,_; + (p — 1) and
from (3) then y, > 2(y,—1 + p — 1). But, if either (iii) or (iv) were true, then either y,

or y, + p would be at most twice the largest element of .A,_;. Thus our claim (4) is
shown and the theorem is proved. ]

Thus, thin infinite perfect Golomb rulers do exist. The construction in Theorem 2
does not give a formula for the nth mark—it just constructs these marks one by one.
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It would be interesting to know how thick an infinite perfect Golomb can be. In
particular is it possible to have

Sg(x) =#{k|keG, k<x}~x? ®)

By arguments similar to the discussion of finite perfect Golomb rulers, it is easy to see
that 8¢ (x) < +/2x, and (5) is motivated by the Erd6s-Turan conjecture about B, bases
(it does not follow from nor does it imply the conjecture).

Minimal spanning rulers Next we return to rulers of finite length and discuss those
that can be used to measure every distance. They differ from Golomb rulers in that
there might be a distance that can be measured in two different ways, but we require
that every eligible distance can be measured. We call such rulers spanning.

DEFINITION 6. Let S = {0 =a; <a, < --- < a, = N} be a set of integers. We
say that S is a spanning ruler on [0, N] if every integer 1 < d < N can be expressed
asd =a —a',withaanda’ € S.

We say that a spanning ruler M is minimal on [0, N1, if whenever M’ is a proper
subset of M then the set M’ is not a spanning ruler on [0, N].

Minimal spanning rulers obviously exist. Just start with {0, 1, ..., N} and remove
one point at a time until you can’t do it anymore.

However, minimal rulers cannot be very thin. If M is a minimal ruler of length N
and p = #M, then (5) = 1p(p — 1) = N; so p is roughly at least V2N. We now
show that we can come fairly close to this lower bound.

THEOREM 3. For every integer N > 4 there is a minimal spanning ruler My C
[0, N1 such that

2WN —1 <#My < 2/N 6)

and the equality on the left side holds only when N is a perfect square.

Proof. The basic idea of the proof can best be seen by an example of a thin minimal
ruler for N = 100. The ruler M is in this case taken to be

M =1{0,1,2,3,...,9,20,30,40, ...,90, 100}.

Notice that the number 10 is not included. The number of elements in Mgy is 19
which is equal to 24/100 — 1. Every distance 1 < d < 100 is realizable: Represent
d = 10 as 30 — 20 and other multiples of 10 are justd =d — 0. If d = ¢ - 10+ j,
1<gq,j<9,thend=(qg+1)-10— (10 — j).

Finally, if 1 <d < 9 then d = d — 0. None of the numbers can be removed. For
example, d = 7 cannot be removed because then 13 = 20 — 7 would not be realizable.
The number 30 cannot be removed because then 21 = 30 — 9 would not be realizable.
If 10 is included the ruler is not minimal. The actual proof is based on this example
although some care must be taken when N is not a perfect square. Here are the details.

By inspection, when N € {5, 6,7, 8} then the minimal spanning rulers satisfying
(6) are, respectively:

{07 ]‘7 3? 5}7 {07 1’ 47 6}’ {07 1’ 47 5’ 7}7 {07 17 47 67 8}'

Incidentally, there are no minimal spanning rulers satisfying the condition (6) for N €
{1, 2, 4} and there is one for N = 3, namely {0, 1, 3}.
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Leté = |v/N]|sothat£2 < N < (& + 1)> = (§ +2)€ + 1. We assume that & > 3.
There are two possibilities:

() N=0mod&ésothat N =K&, K=&, £+1, oré 42 @)
(B)N #A#O0mod&sothat N=K&E+n, K=&oré+1,and1 <n <&.

In case («) take
My=1{0,1,...,6 —1,2&,3¢,...,KE} (£ is not included)

with K as in (7).

Every distance 1 < d < N is realized as the following analysis shows: If 1 < d <
&—1thend =d — 0; Whend = &, thend = 3& — 2¢ since 2&,3& € My for& > 3;
Ford = g&,q > 1thend = g&§ — O; Finally ifd = gé +1n,1 <qg < K,1 <n <&,
thend = (g + D§ — (§ — ).

Also, we see that none of the marks can be removed: The endpoints 0 and N cannot
be deleted because N = N — 0. The points 1 < d < & cannot be deleted because of the
distance & + (¢ — d) = 2& — d. Finally, the points g&, 2 < g < K, cannot be deleted
because of the distance (¢ — 1)§ +1 =¢g& — (§ — 1).

Counting the marks gives #My = & + K — 1. Thus, to show (6) we must prove
that for ¢t =0, 1, 2 then

2JEE+) —1 <26+t —1<2/EE+1)

with equality holding on the left side only when # = 0. This is done in a straightforward
manner by squaring each side of the inequality to eliminate radical expressions.
In case (B8) take

My =1{0,1,...,6 —1,26,3¢, ..., K&, KE+1) (£ notincluded)

where K, n are as specified in (7). Again, all the distances 1 <d < N = K& +
can be realized: If 1 < d < K& then the argument is the same as in case («); If d =
K§+68,1<8=<nd=(K§+n—(1n—29).

None of the marks can be removed: The endpoints cannot be removed because of
the distance N = N — 0. The points £ — ¢, 1 < ¢ < &, ¢ # n cannot be removed
because of the distance & + ¢ = 2& — (§ —¢).

The point £ — 5 cannot be removed because of the distance

(K =Dé +n=KE&—(&—n). 8)

However also (K — 1)§ +n = (K& + 1) — & and we see that (8) is the only way to
realize the distance (K — 1)& + 7 since & ¢ M.

The points 2, 3&, ..., K& cannot be removed for the following reason: Let t be
such that t # 1, 1 <t < &. If k€ is removed then the distance (k — 1) + 7 = k& —
(& — 1) is not realizable. (It can’t be realized using the mark K& + 7.)

Finally, #My = & + K and to show (6) we must prove the inequality

2VEE+ D) +n—1 <254+t <2/ +1)+n.

fort =0,1and 1 <7 < &. Again, squaring both sides of each inequality to eliminate
radicals and some algebra does the job. ]

Minimal spanning rulers can also be quite thickly marked.
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THEOREM 4. For any N > 0 there is a minimal spanning ruler My with
1
#/x1N > EIV.

Proof. A moment’s reflection shows that if N = 2n or N = 2n + 1 then My =
{0,1,...,n, N} works. [ |

Acknowledgment  We thank the referees for many valuable suggestions, including a very nice reformulation
of the statement of Theorem 3.
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Pascal’s Hexagon Theorem Implies the
Butterfly Theorem

GREG MARKOWSKY
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POSTECH

Pohang, 790-784

Republic of Korea
gmarkowsky@gmail.com

It is a shame to pass up any opportunity to apply Pascal’s Hexagon Theorem. The
purpose of this paper is to use this beautiful theorem to give a quick proof of another
theorem in plane geometry, known as the Butterfly Theorem. We also discuss how the
method used here can be extended to general conics. In what follows, ab denotes the
line passing through a and b, ab denotes the line segment between a and b, and |ab|
denotes the length of ab.

BUTTERFLY THEOREM. Let ab be a chord of a circle with midpoint m. Suppose
rs and uv are two other chords that pass through m. Suppose that rv and us intersect
ab, and let p =rvNab and g = us Nab. Then |pm| = |qm)|.

Figure 1

Note that it is not required that the points 7, s, u, v lie in the configuration shown
in FIGURE 1. For instance, # and v can be interchanged, and though this would re-
sult in p and ¢ lying outside the circle the conclusion of the theorem would still hold.
Numerous proofs of this theorem have been developed over time. For examples see
[11, [4, p. 45], or [S5]. The website http://www.cut-the-knot.org contains an
excellent discussion of this theorem as well. For the proof in this paper, we will need
only the following theorem as prerequisite.

PASCAL’S HEXAGON THEOREM. Let a, b, c, d, e, [ be six points on a conic.
Suppose that ab intersects de at u, bc intersects ef at w, and cd intersects fa at v.
Then u, v, and w are collinear.

Math. Mag. 84 (2011) 56-62. doi:10.4169/math.mag.84.1.056. (© Mathematical Association of America
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FIGURE 2 gives an example for an ellipse. The theorem states that uvw is a straight
line.

Figure 2

The reader may not be used to thinking of the lines connecting a, b, ¢, d, e, fin
the above configuration as a hexagon. Nevertheless, Pascal’s Theorem applies, as it
applies to a standard hexagon and to a host of other cases, such as when some of the six
points lie on different branches of a hyperbola, and even when two consecutive points
are allowed to coincide (here the line connecting the two points is replaced by the
tangent to the conic). The configuration above was chosen for ease of drawing, since
in many cases some or all of the points of intersection lie outside the ellipse. Naturally,
numerous proofs of this theorem exist as well; [10] contains a number of them, and
http://www.cut-the-knot.org is another great reference. Let us assume Pascal’s
theorem and take on the Butterfly Theorem.

PROPOSITION 1. Let rs be the diameter of a semicircle, and let a and b be points
on the semicircle not equal to r or s. Let ¢ = as N br. Let d be a point on rs. Then the
following are equivalent:

(1) cd is perpendicular to rs.
(ii) ZLadr = Zbds.

d
Figure 3

Proof. In FIGURE 4 points a’ and b’ are the reflections of a and b across rs.

Ifi = ab’ Na'bitis clear by symmetry thati € rs and Zair = Zbis. Furthermore,
Pascal’s Theorem applied to the hexagon asa’brb’ shows that cic’ is a straight line,
and symmetry shows that it must be perpendicular to rs. Thus, (i) and (ii) both hold if,
and only if, d = i. ]
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b/

Figure 4

Let us refer to such a pair (a, b) as a reflected pair about d. The reader may be
interested to note that the diagram in the proof of Proposition 1 furnishes a proof of
the Butterfly Theorem in case one of the chords rs, uv is a diameter. That is, cc’
extends to a chord of the circle with midpoint i, and rs and ab’ pass through d. The
proposition shows that |ic| = |ic’|. Another application of Pascal’s Theorem allows
us to prove the next proposition and extend this special case to the general Butterfly
Theorem for a circle.

PROPOSITION 2. Let (a, b), (a’, b') be distinct reflected pairs about a point d on
rs. Let e be chosen on the semicircle so that de is perpendicular to rs. Then ab’' and
a'b intersect at a point on de.

b/

d
Figure 5
Proof. Connectas, a’s, br, b'r (FIGURE 6). By Proposition 1, as N br lies on de, as

does a’s N b'r. Thus, by Pascal’s Theorem applied to the hexagon asa’brb’, ab’ N a'b
does as well. m

Figure 6
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Proof of Butterfly Theorem. In FIGURE 1, reflect r and v across the diameter pass-
ing through m to points r’ and v’. This gives the picture in FIGURE 7.

a

Figure 7

Now r’, s and u, v’ are each reflected pairs around m, so by Proposition 2, r'v" and
us intersect on mb. This point of intersection is g, but it is also the reflection of p, and
it follows from this that | pm| = |gm)|. [ |

Pascal’s Theorem is valid for all conics, as is the Butterfly Theorem, so since math-
ematics abhors a coincidence we should suspect that this method of proof works for
general conics. Indeed it does, provided we appropriately adjust the notion of reflec-
tion. We will need the following proposition.

PROPOSITION 3. Let a chord ab of a conic C be given, and let F be the family of
chords of C parallel to ab. Then the midpoints of all chords in F lie on a line ¢£.

The line £ is called the conjugate diameter of F. The reason for this terminology is
that in the case of ellipses it can be shown that £ always passes through the center of
the ellipse, and £ is in that sense a diameter. The same is true with hyperbolas, although
£ need not necessarily intersect the hyperbola. Conjugate diameters for parabolas can
be shown to be lines parallel to the axis of the parabola. The situation for parabo-
las and hyperbolas indicates that it might be a slight abuse of terminology to refer
to ¢ as a “diameter” of any type, but this term is common and we will use it. Con-
jugate diameters seem to have fallen out of style with modern textbook writers, but
http://www.wikipedia.com and http://www.cut-the-knot.org contain brief
illustrations of the concept for ellipses. The more classical texts [6, pp. 66, 68, 82]
and [9, p. 138] both cover the concepts in great detail, and give proofs of existence for
the various conics. In any event, given the initial chord ab we let F be the family of

chords of the conic parallel to ab and let £ be the conjugate diameter of F'. We define
the affine reflection of any point p across £ to be the point p’ such that pp’ is parallel
to ab and the midpoint of pp’ is on £. We also state that the line k' is the reflection of
the line k across £ if the affine reflection across ¢ of every point on k lies on k'. It is not
hard to show that, if j, k are lines which meet at a point p, then the affine reflections
Jj', k' of these lines meet at the point p’, the affine reflection of p. For more on affine
reflections, see [8, pp. 44-46] or [3, pp. 203, 207, 208].

For our purposes, note that Proposition 3 implies that the affine reflection of any
point on the conic across a conjugate diameter is another point on the conic. Let d be
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a point on £. We define a pair of points r and s on the ellipse to be an affine reflected
pair about d if rds’ is a straight line, where s’ is the reflection of s over £.

Figure 8

We see from the preceding discussion and definitions that the relevant properties of
reflections relative to a circle are possessed by affine reflections relative to a general
conic. Thus, the analogs of Propositions 1 and 2 as well as the Butterfly Theorem
follow for conics in exactly the same manner as in the case of the circle, with one
exception. Suppose that the initial chord ab contains one point from each branch of a
hyperbola. The conjugate diameter £ of F exists, but in this case does not intersect the
hyperbola, depriving us of the six points necessary to form a hexagon.

Figure 9

Rectifying this problem requires a bit of projective geometry and a deeper version
of Pascal’s Theorem than was given at the beginning of the paper. Note that in the
given statement, it is assumed that the pairs of opposite sides of the hexagon intersect.
This need not occur, though, as some pairs of opposite sides may be parallel, and it
would seem that in this case Pascal’s Theorem does not apply. However, the natural
setting for Pascal’s Theorem is in fact not the plane, but rather the projective plane.
The projective plane is formed by adding an extra “line at infinity” to the plane. Each
point on this line at infinity corresponds to a direction that a line in the plane may take.
In this context, every pair of lines intersect at exactly one point, since parallel lines
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intersect at a point which lies on the line at infinity. For more on the projective plane,
see [8, chap. 5] or [2, chap. 5]. It is a beautiful fact that Pascal’s Theorem still holds in
the projective plane, and we have the following special case:

PASCAL’S HEXAGON THEOREM WITH ONE PAIR OF PARALLEL SIDES. Suppose
the six points a, b, c,d, e, f lie on a conic, and that ab and de are parallel. If bc
intersects ef and cd intersects fa then the line passing through bc (\ef and cd () fa
is parallel to ab and de.

Proof. ab(\de lies on the line at infinity. Pascal’s Theorem states that the line
through bc () ef and cd () fa passes through ab () de as well. This is equivalent to
the statement of the theorem. ]

BUTTERFLY THEOREM FOR ARBITRARY CONICS. Let ab be a chord of a conic
with midpoint m. Suppose rs and uv are two other chords that pass through m.
Suppose that ru and vs intersect ab, and let p = ru Nab and q = vs Nab. Then

|pm| = |gm|.

Figure 10

Proof. Lets’, u’, v’ be the affine reflections of s, u, v across the conjugate diameter
£ of the family of chords parallel to ab. Note that u'v’ is the affine reflection of uv
across £. The affine reflection across ¢ fixes points on ¢, so since uv passes through m,
so must u'v". Thus, m = rs (| u'v'. Consider the hexagon rss'v'u'u. Since uu’ and ss’
are parallel, we can apply our special case of Pascal’s Hexagon Theorem to conclude
thatm = rs(u'v’ and ru () s’v" lie on a line parallel to uu’ and ss’, namely ab. Since
ru(\ab = p, we must have ru[)s'v' = p. Now s'v' is the affine reflection of sv
across £, and it follows that p and ¢ are affine reflections of each other across ¢ as
well. Therefore, |pm| = |gm]|. [ ]

Extending the theorem The Butterfly Theorem is a special case of a more general
theorem, in which the point m is no longer required to be the midpoint of ab. This was
proved by Candy in 1896, is discussed in [1, p. 207], and can be quite naturally deduced
from Pascal’s Theorem in a similar manner to the above. Recently this theorem has
been extended to a theorem in the complex projective plane in [7].

Acknowledgment The author was supported by the Priority Research Centers Program through the National
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#2009-0094070).
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Summary Pascal’s Hexagon Theorem is used to prove the Butterfly Theorem for conics, a well known result
in Euclidean geometry. In the course of the proof, some basic concepts in projective geometry are introduced.
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PROPOSALS

To be considered for publication, solutions should be received by July 1, 2011.

1861. Proposed by Emeric Deutsch, Polytechnic Institute of New York University,
Brooklyn, NY.

Let n > 2 be an integer. A permutation o : {1,2,...,n} — {1,2, ..., n} can be rep-
resented in the plane by the set of n points P, = {(k, o (k)) : 1 <k < n}. The smallest
square bounding P,, with sides parallel to the coordinate axis, has at least 2 and at
most 4 points of P, on its boundary. The figure below shows a permutation ¢ with 4
points on its bounding square. For every m € {2, 3, 4}, determine the number of per-
mutations o of {1, 2, ..., n} having m points of P, on the boundary of their bounding
square.

. 6.7

L)L G

0 (2.3) ) 7,4
(6,2)
“n °

1862. Proposed by H. A. ShahAli, Tehran, Iran.

Let n be a positive integer. Suppose that the nonnegative real numbers ay, by, a,,
by, ..., a,, b, satisfy thata; <a, <--- < a, and Zf.‘:la,- > Zle b foralll <k <
n. Prove that []'_, a; > []i_, bi forall 1 <k < n.

Math. Mag. 84 (2011) 63-71. doi:10.4169/math.mag.84.1.063. © Mathematical Association of America
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1863. Proposed by Duong Viet Thong, Department of Economics and Mathematics,
National Economics University, Hanoi, Vietnam.

Let f be a continuously differentiable function on [a, ] such that fab fx)dx =0.
Prove that

N3
< umax{|f’(x)| 1 x € [a, b]}.

b
/a xf(x)dx 2

1864. Proposed by Cosmin Pohoata, Princeton University, Princeton, NJ.

Let ABC be a scalene triangle, [ its incenter, and X, Y, and Z the tangency points of
its incircle C with the sides BC, CA, and AB, respectively. Denote by X' # A, Y’ # B,
and Z' # C the intersections of C with the circumcircles of triangles AIX, BIY, and
CIZ, respectively. Prove that the lines AX’, BY’, and CZ’ are concurrent.

1865. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-
versity of New York, Bronx, NY.

In the solution to Problem 1790 (this MAGAZINE 82 (2009) 67-68), it was proved that
if R is a ring such that for each element x € R,

x+x2+x3+x4=x”+x12+x13+x28,

then for each element x € R, x = x'?7. Under the same hypothesis, prove that for each
7

elementx € R,6x =0and x = x'.

Quickies

Answers to the Quickies are on page 71.
Q1007. Proposed by Daniel Goffinet, St. Etienne, France.
What is the 1007th term of the Mclaurin series expansion of

cos?t — 1

_ 2
)= —F—77
Slnt—z

Q1008. Proposed by Steve Butler, UCLA, Los Angeles, CA.

For every positive real a, find the value of

1
/ ((1 = xHYe — x)? dx.
0

Solutions

Non-congruent triangles in a regular n-gon February 2010

1836. Proposed by Michael Wolterman, Washington and Jefferson College, Washing-
ton, PA.

Let n > 3 be a natural number. Find how many pairwise non-congruent triangles are
there among the ('3’) triangles formed by selecting three vertices of a regular n-gon.
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Solution by Bob Tomper, Mathematics Department, University of North Dakota, Grand
Forks, ND.

Label the vertices of the n-gon as vy, v, vy, .. ., v,_. Each triangle formed by se-
lecting three vertices v;, v, and v, with 0 <7 < j < k < n can be encoded as a triple
of positive integers (j — i, k — j, n 4+ i — k) with sum n, and every triple of positive
integers with sum » is the encoding of some such triangle. Since two triangles are con-
gruent if and only if their encodings have the same set of entries, it follows that the
number of triangles is P (n, 3), the number of partitions of n into three positive parts.
It is well-known that P (n, 3) is the nearest integer to n*/12.

Editor’s Note. The fact that the number of partitions of » into three positive parts is the
nearest integer to n>/12 appears as Exercise 15.1 in J. H. van Lint and R. M. Wilson, A
Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992. As noted by Rob
Pratt, this problem appeared as Problem 15B in the previous text and also as Problem
3893 in Amer. Math. Monthly 45 (1938) 631-632.

Also solved by Armstrong Problem Solvers, Tom Beatty, Jany C. Binz (Switzerland), Elton Bojaxhiu (Alba-
nia) and Enkel Hysnelaj (Australia), Bruce S. Burdick, Robert Calcarreta, William J. Cowieson, Chip Curtis,
Robert L. Doucette, Dmitry Fleischman, G.R.A.20 Problem Solving Group (Italy), Lucyna Kabza, Elias Lam-
pakis (Greece), Masao Mabuchi (Japan), Missouri State University Problem Solving Group, José Heber Ni-
eto (Venezuela), Rob Pratt, Joel Schlosberg, John H. Smith, James Swenson, Marian Tetiva (Romania), Mark
S. Weisser, G. Gerard Wojnar, and the proposer.

Rolle’s theorem in action February 2010

1837. Proposed by Duong Viet Thong, Nam Dinh University of Technology Education,
Nam Dinh City, Vietnam.

Let f : [1,2] — R be a continuous function such that f ]2 f(x)dx = 0. Prove that
there exists a real number c in the open interval (1, 2), such that cf(c) = fc : fx)dx.

Solution by Angel Plaza and Sergio Falcén, Department of Mathematics, Universidad
de Las Palmas de Gran Canaria, Las Palmas, Spain.

Define the function F(t) = ¢ ftz f(x)dx, for t € [1,2]. Clearly F is continuous
on [1, 2], differentiable on (1, 2), and F (1) = F(2) = 0. Therefore Rolle’s theorem
implies that there is ¢ € (1, 2) such that F’(c) = 0. Because F’'(c) = fcz f(x)dx —

cf (c), it follows that cf (¢) = fcz f(x)dx.

Also solved by Arkady Alt, Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Aus-
tralia), Michael W. Botsko, Paul Bracken, Paul Budney, Robert Calcaterra, Minh Can, John Christopher, William
J. Cowieson, Chip Curtis, Robert L. Doucette, Brad Emmons, G.R.A.20 Problem Solving Group (Italy), Jeff
Groah, Lee O. Hagglund, Timothy Hall, Eugene A. Herman, Alan D. Hetzel Jr. and Alin A. Stancu, Irina Il-
ioaea (Romania), Kamil Karayilan (Turkey), Elias Lampakis (Greece), David P. Lang, Longxiang Li (China) and
Yi Zheng (China), Tianyu Li (China) and Xiaoxiang Wang (China), Charles Lindsey, Rick Mabry (Germany),
Northwestern University Math Problem Solving Group, Paolo Perfetti (Italy), Phuong Pham, Rob Pratt, Henry
Ricardo, Kevin Roper, Achilleas Sinefakopoulos (Greece), Bob Tomper, Haohao Wang and Jerzy Wojdyto, “Why
So Series?”, and the proposer. There was one incorrect submission.

A weakly convergent series of logs February 2010

1838. Proposed by Costas Efthimiou, University of Central Florida, Orlando, FL.

Compute the sum

>3yt

n=0 m=1
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L. Solution by Tiberiu Trif, Babes-Bolyai University, Cluj-Napoca, Romania.
The answer is %ln(n /2). By Leibniz’ test the alternate series Z,fil(—l)k% con-
verges. Let o denote its sum. Set

oo o0 nmln(n-i-m) mll’l(k—l—m)
=2=:2=: - ZZ( D k+m

n+m k=0 m=1

Because
In(k k Inj
Z( pen B oSy
: J
=

it follows that

s2n=(2n+1)0—22( 1)/ — (n +1)G—Z(2n+1—k)( 1)klnk

k=1 j=1 k=1

2n 2n
=Q2n+Do—Qn+1) Z(—l)k¥ + ) (=D)Ink
= k=1

9~ 1( l)kM + 2n+1 In (;ff)f;!!
= : .
2n+1
Here m!! denotes the double factorial defined recursively as m!! = m((m — 2)!!) and
1!l = 0!l = 1. By the Ceséro-Stolz Theorem for a quotient of sequences, where both

numerator and denominator approach 0, we have that

In@2n+1) _ In@2n+2) 4 1 @2t 1 2m)!!

. . 2n+1 2n+2 2n+3 2n+1)!! 2n+1 2n—1!
lim s,, = lim ] ; .
n—>00 n—00 JEEE S

2n+3 2n+1

A long but elementary computation leads to

1 (@n— DIN>EHD (2 4 1)20m+)

A s = = 2 N T (@ 2+ 2y
, (@n)11)> M+2 In@n+2)
=—Ilim (In In — .
2ie \ (@ D2+ D) " 2nk1 2nt2

The last two terms go to 0 when n — oo and according to Wallis’ formula

(2n)N)? 7
im = —.
n—oo (2n — DIN22n+1) 2

Thus 1lim, o 52, = 1 In(7/2). Finally, since 53,11 = 520 + Y_penuso(—1*Ink/k and
1My 00 Y ponn o (—D¥Ink/k = 0, we conclude that s = lim,_, o 5, = 1 In(77/2).
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II. Solution by the proposer.
Using the fact the function Ins/s is the Laplace transform of —In¢ 4 y (where y
is the Euler-Mascheroni constant), we can rewrite the sum as an integral:

Z Z( 1)"+m 111}5:”1—:‘"”) i i 1)n+m /oo ef(ern)t(ll’lt + V) dt

o f (Int +7) (Z( e ))(Z( e_,))

n=0 m=1

—t

& —e
— Int —dt
fo (In +J/)(1_|_e_,)2

We now use the known integral fol (Inln(u™)/(u + 1)*du = 1(In(rr/2) — y) and the
change of variable u = ¢’ to get

Zz(_l)n+mln(m+n) 2/1 ]n]nuil-";ydu
— m+n 0 (u+1)
/1 lnlnu"d N /1 1 4
= —du —dau
b w2V e

1(171 )+y lln
=—(ln= - Z=-In=.
Ny TY) T Ty

Editor’s Note. Some readers tried to solve the problem by adding over the diag-
onals m 4+ n = d; unfortunately the resulting rearrangement of the series is not
convergent. Ovidiu Furdui and Huizeng Qin note that the generalization of find-
ing > 07 > (=1)"™1In”(m + n)/(m + n) for every p > 1 has been published in
Problema 149, La Gaceta de la RSME 13 (2010) 78-79.

Also solved by Mark S. Ashbaugh and Francisco Vial (Chile), Bruce S. Burdick, Ovidiu Furdui (Romania)
and Huizeng Qin (China), G.R.A.20 Problem Solving Group (Italy), Timothy Hall, Eugene A. Herman, Enkel
Hysnelaj (Australia) and Elton Bojaxhiu (Albania), Nicholas C. Singer, and Bob Tomper. There were six incorrect
submissions.

A characterization of an octant of a sphere February 2010

1839. Proposed by Robert A. Russell, New York, NY.

Consider a sphere of radius 1 and three points A, B, and C on its surface, such that
the area of the convex spherical triangle ABC is w. Let L, M, and N be the midpoints
of the shortest arcs AB, BC, and CA. Give a characterization of the spherical triangle
LMN.

Solution by Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia)

The spherical triangle LMN is an octant of the sphere, i.e., a right equilateral tri-
angle. Denote by O the center of the unit sphere. For any three points X, Y, and Z in
space, denote by ZXYZ the angle XYZ. For any three points X, Y, and Z on the surface
of the sphere, denote by <XYZ the spherical angle XYZ. Let « = ZBOC, = ZAOC,
y = LAOB, o' = <BAC, B’ = <ABC, and y’ = <ACB. Let A, be the point on the
sphere antipodal to A.
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From the given condition, we have that

Spherical Area(ABC) =o'+ 8 +y' — 7 =7,
ie,a + B’ + y’ = 2x. This implies that o’ = (& — B’) + (= — '), and thus
This means that there exists a point P in the (shortest) arc BC such that <A,CB =
<{CA|P and <ABC = <BA,;P. However these identities imply that ZA,OP =
Z/COP and ZA,OP = /BOP, thus P must coincide with M and ZA,OM = %ABOC
=a/2.

Let a = OA, b = OB, and ¢ = OC. Now, OA; = —a. Since OM is the bisector of
/BOC and ZA|OM = «//2, it follows that

—cosy —cosB=—a-b—a-c=(—a)-(b+c)=|—al|b+ c| cos(a/2)

=vbB+c) - (b+c)cos(a/2) =+/2+2(b-c) cos(a/2)

1 4 cosu
= [(24+2cosa) B — =1+cosa.

Therefore cos« + cos  + cos y + 1 = 0. Finally, since

(a+b)y-(a+c)=bhB+c)-(b+a)=(c+a)- -(c+b)
=a-b+b-c+c-a+1=cosa+cosB+cosy+1=0,

it follows that OL L ON, OM 1 OL, and ON 1 OM. Thus ZLON = /MOL =
ZNOM = % and <LMN = <MNL = <NLM = % which is the desired characteriza-
tion.

Editor’s Note. Jim Delany observes that this problem is a particular case of a problem
that appears in J. D. H. Donnay, Spherical Trigonometry, Interscience Publishers, Inc.,
New York, 1945, 62—65. Michel Bataille indicates that the problem also follows from
the note by J. Brooks and J. Strantzen, Spherical Triangles of Area 7 and Isosceles
Tetrahedra, this MAGAZINE 78 (2005) 311-314.

Also solved by Michel Bataille (France), Jim Delany, Raiil A. Simén, and the proposer.
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A generalization of Nesbitt’s Inequality February 2010

1840. Proposed by Tuan Le, 12th grade, Fairmont High School, Anaheim, CA.

Let a, b, and ¢ be nonnegative real numbers such that no two of them are equal to zero.
Prove that

a b c 3Jab
+ + + e >2
b+c c¢c+a a+b 2a+b+c)

Solution by Arkady Alt, San Jose, CA.

Let us assume first that one of the numbers is zero. Suppose that a = 0, then b, ¢ #
0 and the inequality becomes b/c 4+ ¢/b > 2 which is true by the Arithmetic Mean—
Geometric Mean Inequality. From now on, assume that abc # 0. By the Cauchy—
Schwarz Inequality,

a’ b* c?
b b b b
(ab+ca+bc+ab+ca+bc>((a + ca) + (bc 4 ab) + (ca + bc))

> (a+b+c)

thus,

Z a _Z a? - (a+b+c)?
b+c_Cwab—i—ca_Z(ab—f—bc—}—ca)'

cyc
Therefore, it suffices to prove that

(a+b+c)? 3v/abc -5
2(ab+bc+ca) 2a+b+c)

This is equivalent to
(a+b+c)3+3m(ab+bc+ca) —4(a+b+c)lab+bc+ca) >0,
and further equivalent to
((a +b+¢)—4a+b+c)ab+ be+ ca) + 9abc)
+3Yabe (ab + be + ca = 3Va2¢?) = 0. 1)

By Schur’s inequality ) a(a — b)(a — c¢) > 0. This inequality can be rewritten
in the form (a + b + ¢)* > 4(a + b + c¢)(ab + bc + ca) — 9abc, so the expression
in the first line of Inequality (1) is nonnegative. By the Arithmetic Mean—Geometric
Mean Inequality, ab + bc + ca > 3v7/a2b%c2, so the expression in the second line of
Inequality (1) is also nonnegative. This completes the proof. Equality is achieved if
and only if a = b = ¢ or two of a, b, and ¢ are equal to each other and the other is
equal to 0.

Editor’s Note. Some of the solutions submitted used either Schur’s inequality or a
combination of Schur’s inequality with Muirhead’s Theorem. Michael Vowe makes a
substitution that transform the inequality for the positive numbers a, b, and ¢, into an
inequality for the sides of a triangle. Then he reduces this inequality to the well-known
geometric inequality R > 2r, where R is the circumradius of the triangle and r is the
inradius.
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Also solved by George Apostolopoulos (Greece), Michel Bataille (France), Elton Bojaxhiu (Albania) and
Enkel Hysnelaj (Australia), Chip Curtis, Kee-Wai Lau (Hong Kong), Michael Neubauer, Peter Niiesch (Switzer-
land), Paolo Perfetti (Italy), Marian Tetiva (Romania), Michael Vowe (Switzerland), and the proposer. There were
four incorrect submissions.

A property of a tangential quadrilateral February 2010

1834 (corrected). Proposed by Cosmin Pohoata, student, National College “Tudor
Vianu,” Bucharest, Romania.

Let ABCD be a cyclic quadrilateral that also has an inscribed circle with center 7,
and let £ be a line tangent to the incircle. Let A’, B’, C’, and D’, respectively, be the
projections of A, B, C, and D onto £. Prove that

AA"-CC' BB -DD'
Al-CI ~ BI-DI

Composite solution by George Apostolopoulos, Messolonghi, Greece; and Omran
Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

We identify the plane with the set of complex numbers C. The complex number
representing a point, denoted by a capital letter, will be denoted by the corresponding
lower-case letter. Let us start by proving the following lemma.

LEMMA. Let S = {z € C : |z| = 1} be the unit circle in the complex plane.

(a) For every two non-diametrically opposite points U and V in S, the point of inter-
section of the tangents to S from U and V is the point represented by the complex
number 2uv/(u + v).

(b) For every point W in S and every point Z in C, if Z' denotes the projection of Z
onto the tangent to S from W, then ZZ' = |Re(zw) — 1|.

Proof. (a) The point of intersection of the tangents to S from U and from V is the
inverse point with respect to S of the arithmetic mean of U and V; the inverse point of
z=(w+v)/2is

2 2 2uv

u+v Lyl

v

1
z

(b) The equation of the tangent line to S from W is Re(zw) = 1, then the distance
of Z to Z', the projection of Z onto the tangent, is |[Re(zw) — 1]. ]

Now, we come to our problem. Without loss of generality, we may suppose that
the incircle of ABCD is the unit circle S = {z € C: |z] = 1}. Let S, T, U, and V be
the points of contact of circle S with BC, CD, DA, and AB, respectively. We may also
assume that the equation of £ is Re(z) = —1, which is the tangent to S at the point W
corresponding to w = —1.

Since A is the point of intersection of the tangents to S from U and V, we conclude
using the lemma that @ = 2uv/(u + v), and by the second part of the lemma, if A’ is
the projection of A onto £, then

, 2uv 2uv uv uv
AA" = |Re (=) ) =1 =|Re +1| = + —+1
u-+v u-+v u-+v u-+v
1
uv — u+1w+1
B TS I ICR R MCR
u-+v ;-ﬁ-; u—+v
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Similarly, we obtain,

v+ DG +D
vV+S

But, Al = |a] = [2uv/(u + v)| = 2/|u 4+ v|, and similarly Bl = 2/|v + s|, CI =
2/|s +t|, and DI = 2/|t + u|. Therefore

s+D@E+1)
s+t

t+Du+1)
t+u '

BB = , CC = , and DD’ =

A-CC L D+ D+ D+ 1) = 2B DY
Al-cr a4 v s ~ "BI-DI

)

as we wanted to prove.

Editor’s Note. In our haste to fix this problem we corrected the identity to be proved but
reintroduced an unnecessary hypothesis; the quadrilateral does not need to be cyclic.
Elias Lampakis indicates that the problem’s result is a well known theorem attributed
to the French mathematician Michel Chasles (1793-1880).

Also solved by Herb Bailey, Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robin Chapman
(United Kingdom), Dmitry Fleischman, Victor Y. Kutsenok, Elias Lampakis (Greece), Joel Schlosberg, and the
proposer.

Answers

Solutions to the Quickies from page 64.

A1007. The answer is 0. The sum of the numerator and denominator is 0, so this
fraction is equal to —1 whenever the denominator is nonzero. Therefore all terms of
the Maclaurin series except the first are equal to O.

A1008. Suppose that f : [0, 1] — [0, 1] is a continuous function such that f(0) = 1
and f(x) = f~'(x) for all x € [0, 1]. Note that f(x) = (1 — x*)!/“ satisfies these
conditions. Rotate the region under y = f(x) from x = 0 to x = 1 around the x-axis.
Computing the volume V of the resulting solid using the disc method with respect to
x and the shell method with respect to y shows that

1 1 1
Ven / (F)2dx = 2 / v ) dy = 27 / () dy.
0 0 0

Therefore,

1 1 1 1
/(f(x)—x)zdx=/ (f(x))zdx—Z/ xf(x)dx+/ x2dx
0 0

0 0
1
1
=/ xtdx = —.
0 3



REVIEWS

PAUL J. CAMPBELL, Editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Aron, Jacob, Mathematical immortality? Name that theorem, New Scientist (3 December 2010)
67, http://www.newscientist.com/article/dn19809-mathematical-immortality-
give-a-theorem-your-name.html.

There are companies that offer to name a star after you, even though they don’t own it and have
no authority to do so. Well, the same spirit of entrepeneurship has arisen in the mathematical
world. Unfortunately, this news came out too late for me to notify you about this new source
of last-minute mathematics-related winter holiday presents (but there’s always the occasion of
Gauss’s birthday, April 30): You can now give a brand-new theorem and even name it after the
recipient. You don’t even have to prove the theorem (and can’t choose which one)—that is taken
care of by the folks at TheoryMine (http://theorymine.co.uk/), a company dedicated to
using artificial intelligence to automate theorem proving. “The theorems that we produce are
guaranteed to be unique, because we generate them from unique theories.” The theorems are not
cheaper by the dozen but cost £15 apiece, for which you can download a color PDF certificate
of registration of the theorem statement, its name as specified by you, and a brief proof outline.
“In the near future, there will be a range of products available to go with your theorem, like T-
shirts and mugs”—not to mention an electronic journal in which you can elect to publish your
theorem (presumably together with the complete proof).

Aigner, Martin, and Ehrhard Behrends (eds.), Mathematics Everywhere, American Mathemati-
cal Society, 2010; xiv + 330 pp, $49 ($39.20 for AMS members). ISBN 978-0-8218-4349-9.

In Germany, 2008 was the Year of Mathematics, and this book consists of 21 public lectures at
a popular Berlin venue then and earlier (it is a translation of the third edition of Alles Mathe-
matik). Curiously, the book begins with a prologue that notes “Since the previous editions ...
mathematics has become popular. No longer is there a painful silence at a party when some-
one says he is a mathematician: admiration instead. Pretending to have no understanding of
mathematics is no longer in fashion. . .it has become cool to be a mathematician.” Well, that’s
definitely not so in the U.S. but maybe in Germany, where “no other branch of research has
approached the public with such good humor and as creatively”’! (The book neglects to men-
tion that the author of the prologue is not a mathematician but a well-known (in Germany)
journalist, editor of the weekly Die Zeit, and winner of the Media Prize of the Deutsche Mathe-
matische Vereinigung.) Replete with color illustrations and photographs, this attractive volume
of well-written essays highlights case studies (the Reed-Solomon codes behind audio CDs, im-
age processing in liver surgery, shortest-path problems, Turing’s morphogenesis in the context
of Romeo and Juliet, designing materials through mathematics, tomography, kaleidoscopes),
“current topics” (electronic money, the Kepler conjecture, quantum computation, Fermat’s Last
Theorem, Nash equilibrium, climate change), and “the central theme” (secret codes, knots, soap
bubbles, Poincaré conjecture, randomness). The book concludes with Philip J. Davis meditating
on “the prospects for mathematics in a multi-media civilization.”

Math. Mag. 84 (2011) 72-73. doi:10.4169/math.mag.84.1.072. © Mathematical Association of America
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McOwan, Peter, Paul Curzon, and Jonathan Black, The Magic of Computer Science: Card Tricks
Special (available also in Welsh and in Italian), and The Magic of Computer Science: Now We
Have Your Attention. . . , School of Electronic Engineering and Computer Science, Queen Mary,
University of London; 64 pp, 60 pp, http://www.cs4fn.org/magic/magicdownload. php.

KFC [initials], Card trick leads to new bound on data compression, The Physics arXiv Blog
(Technology Review blog), (26 November 2010), http://www.technologyreview.com/
blog/arxiv/26078/.

Gagie, Travis, Bounds from a card trick, http://arxiv.org/abs/1011.4609.

Although authors McCowan et al. use card tricks to arouse the motivation of potential computer
scientists, the magic in these beautifully laid-out booklets is in the mathematics involved. Per-
haps that angle will inspire your students, too, especially when you mention that the inspiration
can also go the other way: Gagie was inspired by card tricks to prove lower bounds for data
compression.

Szpiro, George G., A Mathematical Medley: Fifty Easy Pieces on Mathematics, American
Mathematical Society, 2010; x+ 236 pp, $35 ($28 for AMS members) (P). ISBN 978-0-8218-
4928-6.

George Szpiro is the author of several popular topical books about mathematics—Poincaré’s
Prize (2008), Kepler’s Conjecture (2003)—as well as a previous collection similar to this one,
The Secret Life of Numbers: 50 Easy Pieces on How Mathematicians Work and Think (2006).
Like the essays there, those here are mostly translations of Szpiro’s articles for the Sunday edi-
tion of a Swiss newspaper. Each tells, in a relaxed but breezy style, a short tale that lies behind
a mathematical or scientific concept, result, or paper. The tales weave together mathematical
theorems, applications in the everyday world, personal histories, personalities, and recreational
mathematics. You will find mock theta functions, Lévy distributions, Braess’s paradox, edge-
colorings in networks, sequences of primes, Benford’s distribution, Nash equilibria, the Li cop-
ula, and the axiom of choice; but also algorithms for boarding aircraft, the foraging behavior
of albatrosses, Franklin magic squares, Olympic sprint times, Tic-Tac-Toe in high dimensions,
and cellphone ringtones. But there is not a single equation. I couldn’t put the book down.

Caithamer, Peter, Probability, Statistics, & Financial Math, available from psfm@psfm.net,
2010; vi + 667 pp, $180. ISBN 978-0-9830011-0-2.

The author, a professor in a department of mathematics and actuarial science, asserts that this
book can be used as a text for ““6 to 8 complete courses in stochastics and finance.” That claim is
an exaggeration; for example, the 44 pp and 12 exercises on single-variable regression and time
series are a far cry from standard courses on those topics. However, the book does provide in
well-organized, concise, and easily-searched fashion the bare bones “theoretical underpinnings”
(careful theorems and proofs) for the first four actuarial exams (covering probability, financial
mathematics, and actuarial models) plus applied statistics. That is indeed a service, compared
to the 1,000+-page practice manuals available for each exam. (There are 470 pp of exposition,
examples, and exercises; 176 pp of solutions to exercises; and 20 pp of tables, references, and
index. More details about the content are at http://psfm.net/.)

Grabiner, Judith V., A Historian Looks Back: The Calculus as Algebra and Selected Writings,
MAA, 2010; xv + 287 pp, $62.95 ($49.95 for MAA members). ISBN 978-0-88385-527-0.

Here, by one individual, are seven(!) papers that won awards for excellence in exposition: three
in this MAGAZINE (Allendoerfer Awards) and four in the American Mathematical Monthly
(Ford Awards). (The other three essays in this volume did not appear in MAA journals, so
could not qualify.) In addition, the volume includes a reprint of author Grabiner’s book The
Calculus as Algebra: J. L. Lagrange, 1736—1813 (Garland, 1990). The main thread of her re-
search traces the origins of calculus from Newton through Lagrange to Cauchy, in authoritative
but understandable fashion. The essays also include “The centrality of mathematics in the his-
tory of Western thought” (worth sending a copy to your dean) and “Why should historical truth
matter to mathematicians?” (worth bringing to the attention of new members of the profession).
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NEWS AND LETTERS

71st Annual William Lowell Putnam
Mathematical Competition

Editor’s Note: Additional solutions will be printed in the Monthly later this year.
PROBLEMS

Al. Given apositive integer n, what is the largest k such that the numbers 1,2, ..., n
can be put into k boxes so that the sum of the numbers in each box is the same? [When
n = 8§, the example {1, 2, 3, 6}, {4, 8}, {5, 7} shows that the largest k is at least 3.]

A2. Find all differentiable functions f: R — R such that

i = LeE D=/

for all real numbers x and all positive integers n.

A3. Suppose that the function 4: R*> — R has continuous partial derivatives and
satisfies the equation

oh dh
h(x,y)=a —(x,y) +b—(x,y)
ax ay

for some constants a, b. Prove that if there is a constant M such that |h(x, y)| < M for
all (x, y) in R?, then h(x, y) is identically zero.

A4. Prove that for each positive integer 7, the number 101" + 10" + 10" — 1 is
not prime.
AS. Let G be a group, with operation *. Suppose that

(i) G is a subset of R? (but % need not be related to addition of vectors);

(i) For each a,b € G, eithera x b = axb or a x b = 0 (or both), where x is the
usual cross product in R3,

Provethata x b=0foralla,b € G.

A6. Let f:[0,00) — R be a strictly decreasing continuous function such that

o0
— 1
lim f(x) = 0. Prove that/ f) = fx+ D) dx diverges.
x—00 0 fx)
B1. Is there an infinite sequence of real numbers a,, a;, as, . . . such that
al' +ay +ay +---=m

for every positive integer m?
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B2. Given that A, B, and C are noncollinear points in the plane with integer coordi-
nates such that the distances AB, AC, and BC are integers, what is the smallest possible
value of AB?

B3. There are 2010 boxes labeled B, By, ..., Bo, and 2010n balls have been dis-
tributed among them, for some positive integer n. You may redistribute the balls by
a sequence of moves, each of which consists of choosing an i and moving exactly i
balls from box B; into any one other box. For which values of # is it possible to reach
the distribution with exactly n balls in each box, regardless of the initial distribution of
balls?

B4. Find all pairs of polynomials p(x) and g (x) with real coefficients for which
P gx+1) —px+1Dglx) =1

BS. Is there a strictly increasing function f: R — R such that f'(x) = f(f(x)) for
all x?

B6. Let A be an n x n matrix of real numbers for some n > 1. For each positive
integer k, let A*! be the matrix obtained by raising each entry to the k™ power. Show
thatif A = AW fork =1,2,...,n + 1, then A¥x = AW forall k > 1.

SOLUTIONS

Solution to A1. The largest k is [ (n + 1)/2]. The examples
{1,n}, 2,n—1}, ..., {n/2,n/2+1}
for n even and
{n}, 1,n—1}, 2,n =2}, ..., {(n—1)/2,(n+1)/2}

for n odd show that k = [(n + 1)/2] is possible.
On the other hand, in any distribution, some box must contain 7, so the sum in each
box is at least n, so

1
kn§1+2+---+n:@,

and k < (n 4+ 1)/2. Because k is an integer, k < |[(n + 1)/2].

Solution to A2. Observe that f(x +n) — f(x) = nf'(x) for all real x and all posi-
tive integers n. (We need this fact only for n = 1 and n = 2.) We have, for all x,

2) — 1
fan= LEHD G+

=(f(x+2)—fx) - (fx+ D= fx)

=2f'(x) = f'(x) = f'(0).
But f'(x + 1) — f’(x) is the derivative of the function f(x + 1) — f(x) = f'(x), so
Jf"(x) exists and is O for all x. Integrating twice shows that there exist a, b € R such
that f(x) = ax + b for all x.

Conversely, it is easy to check that any linear function f(x) = ax + b satisfies the
condition in the problem.
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Solution to A3. If a = b = 0, then h(x, y) = 0 for all (x, y). Otherwise, fix an
arbitrary point (xg, yo) and define a function g of one variable by

g(t) = h(xo + at, yo + bt).

By the chain rule,

oh oh
g =a—(xo+at, yo+ bt) + b —(xo + at, yo + bt)
ax ay
= h(xog+at, yo+ bt) = g(t).

Therefore, g(t) = g(0)e’. But |h(x, y)| < M for all (x, y), so |g(t)] < M for all ¢.
Thus g(0) = 0, and A(xg, yo) = g(0) = 0.

Solution to A4. Let N be the number, let 2" be the highest power of 2 dividing n,
and let x = 10?". Then 10'"" is divisible by 10", which is divisible by 2", which is
greater than 2” (because 2" > n > 2™). Thus the first two exponents, 10'"" and 10",
are even multiples of 2, whereas by definition of m, the third exponent, n, is an odd
multiple of 2. So N = x% + x? 4 x?*! — 1 for some nonnegative integers a, b, c.
We have x = —1 (mod (x + 1)), so

N=(D*¥4+(=D?+=D*"—-1=0 (mod (x + 1)).

Thus N is divisible by the integer x + 1 = 10*" +1 > 1, but N and x + 1 are not
congruent modulo 10, so they are not equal. Therefore, N is not prime.

Solution to AS. Suppose not, so that G is not contained in a 1-dimensional subspace.
Let u be any element of G not equal to 0. Choose v € G outside Ru. Thenu x v ¢ Ru,
and in particular u x v # 0, sou x v=u* v € G. Replacing v with u x v, we may
assume that u and v are perpendicular.

Now u x vand u x (u X v) are nonzero, SO

ux xv)=ux(@xv)=ux@*xv)=(uxu)*xv.

Therefore, (u * u) * v is a negative real multiple of v. Because (u * u) x v cannot be a
nonzero multiple of v, it follows that (u x u) x v = 0. Thus u * u is a multiple of v.

Repeating the previous paragraph with u x v in place of v shows that u * u is also
a multiple of u x v,sou*xu = 0.

In particular, if the identity e of G is not 0, setting u = e in the above yields e x e =
0, which shows that e = 0 in any case.

Fix perpendicular nonzero u, v € G as above. Then

(uxu)xv=exv=y,
contradicting the fact that it is a negative multiple of v.

Solution to A6.

First proof. For a given positive integer n, choose a positive integer k large enough
that f(n +k) < f(n+1)/2.Forn <x <n+ 1, we have

fx+k) < f(n+k) < fn+1)/2=< f(x)/2.
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Thus

o f(x)—f<x+1>dx_/"“"if<x+j>—f<x+j+1>dx

n fx) B = fx+J)
n+1 k=1 N . n+1 _
2/ Zf(x+]) f(x+]+1)dx: f(x) f(x—|—k)dx
"5 fx) n fx)
I =fw/2 1
= — Y dax = —.
n fx) 2

We have infinitely many disjoint intervals of the form [n, n 4 k], so the integral di-
verges.

Second proof, based on a student paper: Note that the integrand is positive, so if the
integral were convergent, there would be a lower bound N such that

1 1

/ f) - et ) < = foralla > N.
fx) 2

This would imply, foralla > N,

/ fo) - fa+ D, / fo) = fa+ D,
f(x) fa)

hm/ [f(x)— f(x+ D] dx

f()A
A+1
f(a)A* [/ feode=J f(x)dx]
A+1
f(a)A [/ fede= | f(x)dx]

fla+1
- dx > 14T
f(a)/a Jaydx > =205

Thatis, f(a+ 1) < %f(a) for all @ > N. But then

fX)— f(x+1) . 1f _ 1
fx) fx)y 2

for x > N, and so the integral diverges after all.

Solution to B1. No.

First proof. If |a,| > 1 for some n, then
o0
m = Zalf" > |a,|" > m
i=1

for sufficiently large even positive integers m, a contradiction. If |a,| < 1 for all n,
then
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again a contradiction.

Second proof, based on student papers: There isn’t even a sequence such that the
equation holds for all of m = 2, m = 3, and m = 4. Otherwise, we would have

Because all terms are nonnegative, this implies that for each i, a; = 0 or a; = 1, so
a} =a;.Butthen2 = )7 a? =) °, a’ = 3, a contradiction.
Solution to B2. The smallest possible distance is 3.

The 3-4-5 triangle with A = (0,0), B = (3,0), C = (0, 4) shows that AB = 3 is
possible.

Now suppose that AB < 3. Without loss of generality, assume that A = (0, 0). Be-
cause neither x> 4+ y? = 12 nor x* + y> = 22 has a solution in positive integers, we
may also assume that B = (k, 0) where k is 1 or 2. If AB = 1, then the lengths of
the other two sides differ by less than 1, so AC = BC, and C has x-coordinate 1/2, a
contradiction. If AB = 2, then AC and BC differ by less than 2; on the other hand, if
C = (m, n), then AC* = m* + n® and BC* = (m — 2)*> + n® have the same parity, so
AC and BC have the same parity. Hence AC = BC, so C = (1, n), where n > 0 with-
out loss of generality. But AC*> = n® + 1 lies strictly between two consecutive squares
n? and (n + 1)?, a contradiction.

Solution to B3. Answer: for n > 1005.
If n < 1004, then

2010n <142+ --- 42009,

so one can place the balls so that box B; contains at most i — 1 balls. Then no move is
allowable, and the number of balls in box Bj is 0, not 7.
If n > 1005, the following algorithm produces the desired distribution:
1. Repeat the following until B,, ..., By are all empty:
(a) Move all balls from B; into some other nonempty box.
(b) Choose j € {2, ...,2010} such that B; contains at least j balls.
(c) Repeatedly move j balls from B; to B; until B; has fewer than j balls.
(d) Move balls from B; to B; until B; has exactly j balls.
(e) Empty B; by moving its j balls to Bj.
2. Move n balls from B; to B, foreach k € {2,...,2010}.

Explanation:
* Step 1(b) is always possible, because otherwise the total number of balls would be
at most

2010 - 2009
0+14+2+---+2009 = — < 2010 - 1005 < 2010n.
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* Each iteration of Step 1 increases the number of empty boxes among B,, ..., Bxg
by 1, so eventually we reach Step 2.

* Step 2 is possible, because all the balls are in B; when the step starts.

Solution to B4. Answer: All solutions have the form p(x) = a + bx,q(x) = c +dx
with ad — bc = 1.

If p(x) = pux™ +--- and g(x) = g,x" + - - -, then the coefficient of x on
the left-hand side works out to (n — m) p,,q,, soeitherm =norm+n =1.1f m = n,
then replacing ¢ (x) by g(x) — ;’—:’n p(x) yields a solution with the new n less than m,
but we just showed that this is impossible unless m = 1. Thus m, n < 1 in any case. If
p(x) =a+ bx and g(x) = ¢ + dx, then the condition is

m+n—1

(a+bx)[c+dx+ D] —[a+bx+ D](c+dx) =1,

which is equivalent to ad — bc = 1.

Solution to B5. No. Suppose f is such a function. Then we have f’ > 0,so f”(x) =
S (f(x)) f'(x) =0, so f’ is nondecreasing, so the formula for f” shows that f” is
nondecreasing too. If f”(x) = 0 for all x, then f(x) = ax + b for some a and b,
and then f'(x) = f(f(x)) implies a = b = 0, contradicting the assumption that f
is strictly increasing. Otherwise, if f”(r) = s > 0, say, then f”(x) > s for all x >
r, so there exist ¢, u such that f(x) > (s/2)x> + tx + u for all x > r. Then there
exists k > 0 such that f(x) > kx? for sufficiently large positive x. This implies that
f'(x) = f(f(x)) = kf(x)? for sufficiently large positive x. Integrating f'/f> > k
shows that there exists C such that C — 1/f(x) > kx for sufficiently large positive x.
This contradicts f(x) > kx? for sufficiently large positive x.

Solution to B6. The hypothesis implies that AK'A = A+ fork =1, ..., n. Taking
the (7, j) entry of both sides shows that

k ko kel
a; arj + -+ a;,an = a;

X1 aij
Thus, for fixedi and j, | : | = : is a solution to the linear system
Xn ay j
2
X1 a;;
Bl:i]=| |
n+1
Xn a;
a1 dijn
where B is the matrix . . The Vandermonde determinant formula im-
n n
al 1 e a

in

plies that distinct nonzero columns of B are linearly independent. On the other hand,
the vector on the right-hand side of the system is g;; times the jth column of B. Let S
denote the set {a;|, ais, . .., a;,} — {0}. Then every solution to the system satisfies

Z Y. — dijj, ifs=a,-j
r = .
0 if s #Clij

riaj,=s ’
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for all s in S. It follows that

k k _ k __k+1
a;aij+---+a;,a, = § (S E : “rf) = a;;

ses riaj=s

for all k > 1. Thus AK1A = AK+1 for all k, and the result follows by induction.

Letter to the Editor

I read with interest Parker’s Note [2] in the February 2010 issue of this MAGAZINE,
presenting a remarkable property of the catenary, namely that the area under this curve
is proportional to its length. This property already appears in the classical treatise on
curves by Loria [1, p. 576], where it is enunciated for the cumulative area A(x) and
chord length s(x) above an interval from the origin to an arbitrary x-value. However,
if A(x) and s(x) are proportional (i.e., their ratio is constant), this property extends
to their increments between two x-values. Therefore, the proportionality between area
and length applies to any horizontal interval, as stated in the Note [2].

JAVIER SANCHEZ-REYES
University of Castilla-La Mancha, Spain
Javier.SanchezReyes @uclm.es
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